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1. Introduction. Motivated by the general philosophy underlying applications of the Hardy-Littlewood
method, it is conjectured that whenever s and k are positive integers with s > k + 1, and n is a large
natural number satisfying the necessary local conditions, then n should be represented as the sum of s
kth powers of prime numbers. In order to be somewhat explicit concerning the local conditions, suppose
that k is a natural number and p is a prime number. We denote by θ = θ(k, p) the integer with pθ|k
and pθ+1 - k, and then define γ = γ(k, p) by

γ(k, p) =

{
θ + 2, when p = 2 and θ > 0,

θ + 1, otherwise.
(1.1)

Finally, we put

K(k) =
∏

(p−1)|k

pγ .

In particular, therefore, one has K(4) = 240 and K(5) = 2. Following Hua [8] (see, in particular, p.108),
we denote by H(k) the least integer s such that every sufficiently large positive integer congruent to s
modulo K(k) may be written as a sum of s kth powers of prime numbers. Note that when (p−1)|k and
(p, a) = 1, one has pθ(p− 1)|k, whence ak ≡ 1 (mod pγ). Thus it follows that whenever n is the sum of
s kth powers of primes exceeding k + 1, then necessarily n is congruent to s modulo K(k). However,
further congruence conditions may arise from primes p with (p− 1) - k (see, for example, Kawada [10]).

By the middle of this century, work of I. M. Vinogradov [20, 21], Hua (see [7] and [8]) and Davenport
[4] had shown that

H(1) 6 3, H(2) 6 5, H(3) 6 9, H(4) 6 15,

H(5) 6 25, H(6) 6 37, H(7) 6 55, H(8) 6 75.

For k 6 4, the above bounds for H(k) remain the sharpest hitherto available. When k > 5, however, the
new techniques developed in the mid-1980’s by Thanigasalam [11-14] and Vaughan [17] yield superior
bounds. In particular, the former author has obtained the upper bounds

H(5) 6 23, H(6) 6 33, H(7) 6 47, H(8) 6 63.

The purpose of this paper is to establish new bounds for H(k) when k = 4 and 5. We remark that
the methods employed in the proof of these new bounds are somewhat novel in their use of estimates
stemming directly from exponential sums over prime numbers in combination with the linear sieve,
rather than the conventional methods which would rather “waste” a variable or two by throwing minor
arc estimates down to an auxiliary mean value estimate based on variables not restricted to be prime
numbers. We express the hope that this more sophisticated treatment may inspire further work in this
area.
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Theorem 1. One has H(4) 6 14. In particular, every sufficiently large integer congruent to 14 modulo
240 may be written as the sum of 14 fourth powers of prime numbers.

The argument used to establish Theorem 1 may also be applied to establish the following conclusions,
though we provide no details herein.

(i) For each positive number A, all but at most O(N(logN)−A) of the integers n ≡ 7 (mod 240) with
1 6 n 6 N are represented as the sum of 7 fourth powers of prime numbers;

(ii) One has H(5) 6 22. In particular, every sufficiently large even integer is the sum of 22 fifth powers
of prime numbers;

(iii) For each positive number A, all but at most O(N(logN)−A) of the odd numbers n with 1 6 n 6 N
are represented as the sum of 11 fifth powers of prime numbers.

We note that a formal application of the Hardy-Littlewood method leads one to expect that H(4) = 5
and H(5) = 10, based on a consideration of congruence conditions modulo 13 and 11, respectively.

The method we apply to prove Theorem 1 narrowly fails to establish the sharper upper bound
H(5) 6 21. However, by appealing to Iwaniec’s linear sieve in combination with the switching principle,
we are able to surmount the difficulties associated with the proof of such a bound.

Theorem 2. One has H(5) 6 21. In particular, every sufficiently large odd integer may be written as
the sum of 21 fifth powers of prime numbers.

We establish Theorems 1 and 2 by means of the Hardy-Littlewood method, and this entails making
use of various estimates for exponential sums. In §2 we discuss the Hardy-Littlewood dissection utilized
in our subsequent argument, together with a number of estimates primarily of use in our analysis of
the major arcs in the latter dissection. In order to provide appropriate upper bounds for exponential
sums involving prime numbers, and allied sums pertinent to the sieving procedure described in §§7 and
9, it is necessary to consider estimates for bilinear and trilinear exponential sums. Such matters are
discussed in §3. We derive mean value estimates for exponential sums over fourth powers from work of
Vaughan [17] and Thanigasalam [14] in §4, and complete our proof of Theorem 1 in §5 by making use
of the technical estimates of §§2 and 3 within the medium of the circle method.

The proof of Theorem 2, which we describe in §§6-9, is complicated by our inability to consider
directly sums of 21 fifth powers of prime numbers. Instead, we are forced to apply a sieving procedure
in combination with the circle method to detect representations of a given integer N in such a manner.
A related device was employed by Heath-Brown [5] in the course of investigations concerning 4-term
arithmetic progressions consisting of primes and almost-primes, and more recently in work of Brüdern
[1, 2, 3], and Kawada [10] on the Waring-Goldbach problem. Thus, in §6 we establish the mean value
estimates required in our application of the circle method for sums of fifth powers of primes. We aim to
exclude almost-primes in order to detect only the representations of the desired integer N as a sum of
21 fifth powers of prime numbers, and thus in §7 we estimate the contribution of the offensive almost-
primes to the number of proposed representations. In order to achieve this end we employ a form of
Iwaniec’s linear sieve with the “switching principle”, such matters being deferred to §9. The proof of
Theorem 2 is then completed on providing a comparison between the two singular series arising from
our applications of the Hardy-Littlewood method, this being crucial to the sieving procedure.

As is usual, we abbreviate e2πiz to e(z), and write [x] for the largest integer not exceeding x. The
letter p, with or without a subscript, always denotes a prime number. We use ε to denote a sufficiently
small positive number, and take P to be the main parameter, a real number sufficiently large in terms of
ε and k. We use� and� to denote Vinogradov’s well-known notation, and write A � B as shorthand
for the statement A � B � A. Implicit constants in the notations of Vinogradov and Landau may
depend at most on ε and k, unless otherwise indicated. Finally, we adopt the convention throughout
that whenever ε occurs in a statement, then the statement holds for each positive number ε.

2. Preliminaries. Before embarking on the substantive parts of the proofs of Theorems 1 and 2, we
first present a number of technical estimates of which we make use in subsequent sections. When k > 2,
we write

Sk(q, a) =

q∑
r=1

e(ark/q), (2.1)

and define also the multiplicative function wk(q) by taking

wk(puk+v) =

{
kp−u−1/2, when u > 0 and v = 1,

p−u−1, when u > 0 and 2 6 v 6 k.



THE WARING-GOLDBACH PROBLEM 3

Then according to Lemma 3 of [17], whenever a ∈ Z and q ∈ N satisfy (a, q) = 1, one has

q−1/2 6 wk(q)� q−1/k, (2.2)

and
q−1Sk(q, a)� wk(q). (2.3)

It is convenient to combine the conclusions of Lemmata 2.4, 6.1 and 6.2 of Vaughan [19] in the shape
of the following lemma.

Lemma 2.1. Let k be a natural number with k > 3, let X be a real number with X > 2, and suppose
that I is an interval contained in [X, 2X]. Suppose also that C1 and C2 are fixed positive numbers.
When α is a real number satisfying the condition that there exist a ∈ Z and q ∈ N with

(a, q) = 1, 1 6 q 6 C1X
k21−k

and |qα− a| 6 C2X
k(21−k−1), (2.4)

one has ∑
x∈I

e(αxk)� wk(q)X

1 +Xk|α− a/q|
, (2.5)

and otherwise ∑
x∈I

e(αxk)� X1−21−k+ε. (2.6)

Similarly, when α satisfies the condition (2.4) one has

∑
x∈I

(log x)e(αxk)� wk(q)X logX

1 +Xk|α− a/q|
, (2.7)

and otherwise ∑
x∈I

(log x)e(αxk)� X1−21−k+ε. (2.8)

Proof. By Dirichlet’s approximation theorem there exist a ∈ Z and q ∈ N with

(a, q) = 1, 1 6 q 6 2kkXk−1 and |qα− a| 6 (2kkXk−1)−1.

When q > X, it follows from Weyl’s inequality (see [19, Lemma 2.4]) that∑
x∈I

e(αxk)� X1−21−k+ε. (2.9)

If q 6 X, meanwhile, we may combine Lemmata 6.1 and 6.2 of [19] with (2.3) to obtain

∑
x∈I

e(αxk)� wk(q)X

1 +Xk|α− a/q|
+ q

1
2 +ε. (2.10)

But in circumstances where

C1X
k21−k

< q 6 X or |qα− a| > C2X
k(21−k−1),

one deduces from (2.2) and (2.10) that

∑
x∈I

e(αxk)� X

(q +Xk|qα− a|)1/k
+X

1
2 +ε � X1−21−k

. (2.11)

On the other hand, when

1 6 q 6 C1X
k21−k

and |qα− a| 6 C2X
k(21−k−1),
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then the first term on the right hand side of (2.10) dominates the second term. Indeed, on recalling
(2.2) we find that

wk(q)X

1 +Xk|α− a/q|
> q1/2 X

q +Xk|qα− a|
� q1/2X1−k21−k

,

and the desired conclusion follows on noting that k21−k < 1 for k > 3. Thus we deduce that (2.5)
holds when α satisfies the conditions (2.4), and from (2.9) and (2.11) we conclude that when α does
not satisfy (2.4), then the estimate (2.6) holds.

The proof of the lemma is completed on observing that the estimates (2.7) and (2.8) follow immedi-
ately from (2.5) and (2.6) via partial summation.

Next we prepare a few results concerning wk(q). In this context, it is useful to write vk(q) for the
multiplicative function of q defined by taking

vk(puk+v) = pu+1,

for u > 0 and 1 6 v 6 k.

Lemma 2.2. Let k be a natural number with k > 3. Then for each q ∈ N, one has∑
d|q

wk(q/d)vk(d)−1 � qεwk(q).

Proof. Put

A(q) =
∑
d|q

wk(q/d)vk(d)−1.

Since A(q) is plainly a multiplicative function of q, the proof of the lemma will be completed by showing
that for each prime p and natural number l, one has

A(pl)� lwk(pl). (2.12)

But in view of the definition of wk(q), one has

wk(pl−k) = pwk(pl) for l > k,

and
wk(pl−h) 6 kpwk(pl) for l > h and 0 6 h 6 k − 1.

Consequently, whenever l > h > 0, it follows that

wk(pl−h) 6 kvk(ph)wk(pl),

whence for l > 1 we arrive at the upper bound

A(pl) =
l∑

h=0

wk(pl−h)vk(ph)−1 6
l∑

h=0

kwk(pl)� lwk(pl),

which is the desired estimate (2.12). This completes the proof of the lemma.

Lemma 2.3. Suppose that N is a real number with N > 2, and q ∈ N. Then∑
16n6N

wk(q/(q, nk))n−1 � qεwk(q) logN.

Proof. On recalling the definition of vk(q) and making use of multiplicativity, we find that nk ≡ 0
(mod d) if and only if n ≡ 0 (mod vk(d)). Consequently,∑

16n6N

wk(q/(q, nk))n−1 6
∑
d|q

wk(q/d)
∑

16n6N
nk≡0 (mod d)

n−1

�
∑
d|q

wk(q/d)vk(d)−1 logN.

The proof of the lemma is completed on applying the conclusion of Lemma 2.2.
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Lemma 2.4. Let k be a natural number with k > 3, and suppose that η and ξ are real numbers satisfying
η > 0, ξ > 2η + 2 and ξ > kη + 1. Then whenever Q > 2, one has∑

16q6Q

qηwk(q)ξ �
{

1, when ξ > kη + 1,

logQ, when ξ = kη + 1,

where the implied constant depends at most on k, η and ξ.

Proof. In view of the multiplicative property of wk(q), one has

∑
16q6Q

qηwk(q)ξ 6
∏
p6Q

(
1 +

∞∑
l=1

pηlwk(pl)ξ
)
. (2.13)

But from the definition of wk(q) we deduce that

∞∑
l=1

pηlwk(pl)ξ =
∞∑
u=0

(
pη(ku+1)(kp−u−

1
2 )ξ +

k∑
v=2

pη(ku+v)(p−u−1)ξ

)
,

whence

∞∑
l=1

pηlwk(pl)ξ−
∞∑
u=0

p−(ξ−kη)(u+1)

�
∞∑
u=0

(
p−(ξ−kη)u−(ξ−2η)/2 + p−(ξ−kη)(u+1)−η

)
.

Thus we obtain the estimate

∞∑
l=1

pηlwk(pl)ξ − p−(ξ−kη) � p−2(ξ−kη) + p−(ξ−2η)/2 + p−(ξ−kη)−η. (2.14)

In view of our hypotheses concerning ξ and η, it follows that there is a positive number ν for which the
right hand side of (2.14) is O(p−1−ν). Thus, when ξ > kη + 1 one deduces from (2.13) that∑

16q6Q

qηwk(q)ξ 6
∏
p6Q

(
1 + p−(ξ−kη) +O(p−1−ν)

)
� 1,

and when ξ = kη + 1, a well-known prime number estimate reveals in like manner that∑
16q6Q

qηwk(q)ξ 6
∏
p6Q

(
1 + p−1 +O(p−1−ν)

)
� logQ.

This completes the proof of the lemma.

We make use of various Farey dissections of the unit interval in the sequel, and so at this point it is
convenient to fix a uniform notation. When X > 1 and Y > 2X2, we define the major arcs M(X;Y )
to be the union of the intervals

M(q, a;X;Y ) = {α ∈ [0, 1) : |qα− a| 6 XY −1}, (2.15)

with 0 6 a 6 q 6 X and (a, q) = 1. We then define

m(X;Y ) = [0, 1) \M(X;Y ). (2.16)

Note that when 1 6 q, q′ 6 X, (a, q) = (a′, q′) = 1 and a/q 6= a′/q′, then our hypotheses on X and Y
imply that ∣∣∣∣aq − a′

q′

∣∣∣∣ > 1

qq′
>

2X2

qq′Y
>

(q + q′)X

qq′Y
=

X

qY
+

X

q′Y
,

whence the intervals M(q, a;X;Y ) comprising M(X;Y ) are pairwise disjoint.
We close this section by establishing a variant of Lemma 4 of Brüdern [3].
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Lemma 2.5. Let k be a natural number with k > 4, and let Q and P be real numbers with 1 6 Q 6 P .
Write

g(α) =
∑

Q<p62Q

e(pkα),

and when η is a positive number, let Ψη(α) be the function defined on M(Q;P k) by taking

Ψη(α) = qηwk(q)(1 + P k|α− a/q|)−1

for α ∈M(q, a;Q;P k) ⊆M(Q;P k). Then whenever 0 < η 6 (4k)−1, one has∫
M(Q;Pk)

Ψη(α)3|g(α)|2dα� Q2P−k.

Proof. We have ∫
M(Q;Pk)

Ψη(α)3|g(α)|2dα�
∑

16q6Q

q3ηwk(q)3I(Q, q), (2.17)

where

I(Q, q) =

q∑
a=1

(a,q)=1

∫ QP−k

0

(1 + P kβ)−3|g(β + a/q)|2dβ. (2.18)

But

q∑
a=1

(a,q)=1

|g(β + a/q)|2 6
q∑
a=1

∣∣∣ ∑
Q<p62Q

e(pk(β + a/q))|2

6 q
∑

Q<p1,p262Q

pk1≡p
k
2 (mod q)

1.

For each pair p1, p2 occurring in the latter summation, whenever q 6 Q one plainly has (q, p1p2) = 1.
But when (h, q) = 1, the number of solutions x modulo q of the congruence xk ≡ h (mod q) is O(qε),
and thus

q∑
a=1

(a,q)=1

|g(β + a/q)|2 � q1+εQ(Qq−1 + 1)� qεQ2.

We therefore deduce from (2.18) that

I(Q, q)� qεQ2

∫ ∞
0

(1 + P kβ)−3dβ � qεQ2P−k,

whence by (2.17) and Lemma 2.4 it follows that∫
M(Q;Pk)

Ψη(α)3|g(α)|2dα� Q2P−k
∑

16q6Q

q1/kwk(q)3 � Q2P−k.

This completes the proof of the lemma.

3. Weyl sums and multilinear exponential sums. The purpose of this section is to provide
estimates for both Weyl sums over prime numbers, and also certain multilinear exponential sums, of
use in our application of the Hardy-Littlewood method. We begin by estimating a bilinear exponential
sum. Here and throughout we write τ(m) for the divisor function.
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Lemma 3.1. Let k be a natural number with k > 4, and let P , P ′, M , M ′, U and U ′ be positive real
numbers with

P 1/2 6M 6 P, P 6 P ′ 6 2P and M 6M ′ 6 2M.

Suppose that (am) and (bn) are sequences of complex numbers satisfying the inequalities

|am| 6 τ(m) + logm and |bn| 6 log n

for each m and n. Suppose further that α is a real number, and that there exist a ∈ Z and q ∈ N with

(a, q) = 1, 1 6 q 6 P k/2 and |qα− a| 6 P−k/2. (3.1)

Then one has ∑
M<m6M ′

am
∑

P/m<n6P ′/m
U<n6U ′

bne((mn)kα)

� PMε−2−k + (PM)1/2+ε +
qεwk(q)1/2P (logP )4

(1 + P k|α− a/q|)1/2
.

Proof. Our proof is motivated by the arguments appearing in Vaughan [18, §3]. The first task is to
exploit the bilinearity of the exponential sum through an application of Cauchy’s inequality. Noting
first that our hypotheses on (am) ensure that∑

M<m62M

|am|2 �M(logM)3,

an application of Cauchy’s inequality reveals that∣∣∣ ∑
M<m6M ′

am
∑

P/m<n6P ′/m
U<n6U ′

bne((mn)kα)
∣∣∣2�M(logM)3S0, (3.2)

where

S0 =
∑

M<m62M

∣∣∣ ∑
P/m<n6P ′/m

U<n6U ′

bne((mn)kα)
∣∣∣2.

Write N = P/(2M) and

I(n1, n2) = (M, 2M ] ∩ (P/min{n1, n2}, P ′/max{n1, n2}].

Then by expanding the square and interchanging the order of summation, we find that

S0 �
∑

N<n1,n264N

|bn1bn2 |
∣∣∣ ∑
m∈I(n1,n2)

e((nk1 − nk2)mkα)
∣∣∣.

Write
S1 =

∑
N<n1<n264N

∣∣∣ ∑
m∈I(n1,n2)

e((nk2 − nk1)mkα)
∣∣∣.

Then on recalling our hypotheses on (bn) and isolating the terms with n1 = n2, we deduce that

S0 � (logP )2(NM + S1)� (logP )2(P + S1). (3.3)

Denote by N the set of ordered pairs (n1, n2), with N < n1 < n2 6 4N , for which there exist b ∈ Z
and r ∈ N with

(b, r) = 1, 1 6 r 6 2−2kMk21−k
and |r(nk2 − nk1)α− b| 6 1

2M
k(21−k−1). (3.4)
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Then by Lemma 2.1 we have

S1 � S2 +N2M1−21−k+ε, (3.5)

where

S2 =
∑

(n1,n2)∈N

wk(r)M

1 +Mk|(nk2 − nk1)α− b/r|
, (3.6)

and here b and r are the integers defined in (3.4) (which may, of course, depend on n1 and n2). When
(n1, n2) ∈ N , we put

n0 = (n1, n2), n = n1/n0 and l = (n2 − n1)/n0.

Define also D = D(n, l) by
D = ((n+ l)k − nk)/l,

and note that kNk−1 < D < k(4N)k−1. Then on substituting these expressions into (3.6), we find that

S2 �
∑

16n064N

∑
16l64N/n0

∑
N/n0<n64N/n0

(n,l)=1
(nn0,(n+l)n0)∈N

wk(r)M

1 +Mk|nk0 lDα− b/r|
. (3.7)

For each pair (n0, l) occurring in the summations of (3.7), we apply Dirichlet’s approximation theorem
to deduce the existence of c ∈ Z and s ∈ N with

(c, s) = 1, 1 6 s 6Mk(1−21−k) and |snk0 lα− c| 6Mk(21−k−1).

In view of (3.4), one has

|crD − bs| 6 rDMk(21−k−1) + 1
2sM

k(21−k−1)

< 1
2 + 2−2kkMk(22−k−1)(4N)k−1.

On recalling that N = P/(2M) and M > P 1/2, and noting that for k > 4 one has k(2 − 22−k) − 1 >
2(k − 1), we therefore deduce that

|crD − bs| < 1
2 + k2−k−1P k−1M1−k(2−22−k) < 1.

Thus we have
b

rD
=
c

s
, r =

s

(s,D)
,

and
|nk0 lDα− b/r| = D|nk0 lα− c/s| � Nk−1|nk0 lα− c/s|.

Hence we conclude from (3.7) that

S2 �
∑

16n064N

∑
16l64N/n0

M

1 +MkNk−1|nk0 lα− c/s|
∑

16n64N/n0

(n,l)=1

wk(s/(s,D)). (3.8)

We now investigate the innermost sum in (3.8), starting from the inequality∑
16n64N/n0

(n,l)=1

wk(s/(s,D)) 6
∑
s0|s

wk(s/s0)
∑

16n64N/n0

(n,l)=1
D≡0 (mod s0)

1. (3.9)

Note first that whenever n occurs in the innermost sum of (3.9), then (n, l) = 1 and

D = ((n+ l)k − nk)/l ≡ 0 (mod s0), (3.10)
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whence (n, s0) = 1. Write
s1 = (l, s0), s2 = s0/s1, l0 = l/s1,

and let n be an integer satisfying the congruence nn ≡ 1 (mod s0). Then it follows from (3.10) that

(1 + l0s1n)k ≡ 1 (mod s0).

But the congruence yk ≡ 1 (mod s0) has at most O(sε0) solutions modulo s0, say y1, . . . , yν for some
integer ν with 1 6 ν � sε0. Then 1 + l0s1n ≡ yj (mod s0) for some j with 1 6 j 6 ν, and hence
yj ≡ 1 (mod s1) and l0n ≡ (yj − 1)/s1 (mod s2). Since (l0, s2) = 1, the latter congruence implies
that n belongs to one of O(sε0) residue classes modulo s2, and hence n likewise belongs to one of O(sε0)
residue classes modulo s2. On the other hand, since knk−1 ≡ D ≡ 0 (mod s1) and (n, s1) = 1, one has
s1|k. Thus s2 = s0/s1 � s0, and so by (3.9) and (2.2),∑

16n64N/n0

(n,l)=1

wk(s/(s,D))�
∑
s0|s

wk(s/s0)sε0(N(n0s0)−1 + 1)

� sεNn−1
0

∑
s0|s

s−1
0 wk(s/s0) + sε

∑
s0|s

1.

Consequently, recalling that vk(d) 6 d, we deduce from Lemma 2.2 that∑
16n64N/n0

(n,l)=1

wk(s/(s,D))� sεwk(s)Nn−1
0 + sε. (3.11)

Next write

T (n0, l) =
sεwk(s)Pn−1

0

1 + P k−1M |nk0 lα− c/s|
.

Then on combining (3.8) and (3.11), we obtain

S2 �
∑

16n064N

∑
16l64N/n0

(T (n0, l) + sεM)

�
∑

16n064N

∑
16l64N/n0

T (n0, l) + P 1+ε. (3.12)

In view of (2.2), one has

T (n0, l)�
sεPn−1

0

(s+ P k−1M |snk0 lα− c|)1/k
,

whence
T (n0, l)� PMε−21−k

n−1
0 ,

except possibly when

1 6 s 6Mk21−k
and |snk0 lα− c| 6 1

2M
k21−k−1P 1−k. (3.13)

For each integer n0 satisfying 1 6 n0 6 4N , we denote by L the set of natural numbers l with
1 6 l 6 4N/n0 for which the conditions (3.13) are satisfied. Then on writing

S3 =
∑

16n064N

∑
l∈L

T (n0, l), (3.14)

we deduce from (3.5) and (3.12) that

S1 � S3 + P 1+ε + P 2Mε−1−21−k
. (3.15)
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For each integer n0 satisfying 1 6 n0 6 4N , it follows from Dirichlet’s approximation theorem that
there exist d ∈ Z and t ∈ N with

(d, t) = 1, 1 6 t 6 P k−1M1−k21−k
and |tnk0α− d| 6Mk21−k−1P 1−k.

Then for l ∈ L, we find from (3.13) that

|sld− tc| 6 slMk21−k−1P 1−k + 1
2 tM

k21−k−1P 1−k

6 1
2 + 4P 2−kM2(k21−k−1) < 1.

Thus we deduce that c/(sl) = d/t and s = t/(t, l). Therefore, on writing

Z = P k−1M |nk0α− d/t|,

we arrive at the estimate∑
l∈L

T (n0, l)�
∑
l∈L

tεwk(t/(t, l))Pn−1
0

1 + Zl

� P

n0
tε
∑
t0|t

wk(t/t0)
∑

16l′64N/(n0t0)

(1 + Zt0l
′)−1.

The innermost sum in the last expression satisfies the inequality∑
16l′64N/(n0t0)

(1 + Zt0l
′)−1 � min{N(n0t0)−1, (Zt0)−1 logP}

� N(logP )(n0t0)−1(1 + ZN/n0)−1.

Thus, on applying Lemma 2.2 via the upper bound vk(d) 6 d again, we obtain the estimate∑
l∈L

T (n0, l)� T1(n0), (3.16)

where

T1(n0) =
tεwk(t)Pn−2

0 N logP

1 + P kn−1
0 |nk0α− d/t|

. (3.17)

On one hand we have the trivial estimate

T1(n0)� P 1+εNn−2
0 .

But in view of (2.2), one has also the bound

T1(n0)� P 1+εNn−2
0

(t+ P kn−1
0 |tnk0α− d|)1/k

.

Then
T1(n0)� P 2+εM−1−21−k

n−2
0 ,

except possibly when

1 6 t 6Mk21−k
and |tnk0α− d| 6 n0M

k21−k
P−k. (3.18)

Accordingly, we define N0 to be the set of natural numbers n0, with 1 6 n0 6 M21−k
, such that the

conditions (3.18) are satisfied. Then by (3.14) and (3.16) we obtain

S3 �
∑
n0∈N0

T1(n0) +
∑

n0>M21−k

P 1+εNn−2
0 +

∑
16n064N

P 2+εM−1−21−k
n−2

0 ,
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whence by (3.15),

S1 �
∑
n0∈N0

T1(n0) + P 1+ε + P 2+εM−1−21−k
. (3.19)

Suppose next that n0 ∈ N0. When a ∈ Z and q ∈ N satisfy (3.1), it follows from (3.18) that

|nk0ta− dq| 6 nk0tP
−k/2 + qn0M

k21−k
P−k

6Mk22−k
P−k/2 +M (k+1)21−k

P−k/2 < 1.

Thus we have d/(tnk0) = a/q and t = q/(q, nk0), and hence by (3.17) one has

∑
n0∈N0

T1(n0)�
∑
n0∈N0

qεwk(q/(q, nk0))Pn−2
0 N logP

1 + P knk−1
0 |α− a/q|

� qεPN logP

1 + P k|α− a/q|
∑

16n06M21−k

wk(q/(q, nk0))n−2
0 .

But on applying Lemma 2.3 in order to estimate the latter sum, we conclude that

∑
n0∈N0

T1(n0)� qεwk(q)PN(logP )2

1 + P k|α− a/q|
. (3.20)

We now collect together (3.2), (3.3), (3.19) and (3.20), concluding that∣∣∣ ∑
M<m6M ′

am
∑

P/m<n6P ′/m
U<n6U ′

bne((mn)kα)
∣∣∣2

� P 1+εM + P 2Mε−21−k
+
qεwk(q)P 2(logP )7

1 + P k|α− a/q|
,

whence the conclusion of the lemma follows immediately.

Next we turn our attention to the estimation of a trilinear exponential sum.

Lemma 3.2. Let k be a natural number with k > 4, and let P , P ′, M and N be real numbers with
M > 1, N > 1, 2 6 P 6 P ′ 6 2P ,

M1−22−k
N2−22−k

6 P 1−22−k
and M2−22−k

N−22−k
6 P 1−22−k

. (3.21)

Suppose that (am), (bn) and (cl) are sequences of complex numbers satisfying

|am| 6 1 + logm, |bn| 6 1

for each m and n, and with cl = 1 for all l, or cl = log l for all l. Suppose further that α is a real
number, and that there exist a ∈ Z and q ∈ N satisfying (3.1). Then one has∑

16m6M

am
∑

16n6N

bn
∑

P/(mn)<l6P ′/(mn)

cle((lmn)kα)

� P 1−21−k+ε(MN)21−k
+
qεwk(q)P (logP )4

1 + P k|α− a/q|
.

Proof. For each integer m with 1 6 m 6M , denote by N the set of natural numbers n with 1 6 n 6 N
for which there exist b ∈ Z and r ∈ N with

(b, r) = 1, 1 6 r 6 1
3 (P/(mn))k21−k

and |r(mn)kα− b| 6 1
2 (P/(mn))k(21−k−1). (3.22)
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Then in view of Lemma 2.1, one has∑
16m6M

am
∑

16n6N

bn
∑

P/(mn)<l6P ′/(mn)

cle((lmn)kα)� E0 + E1, (3.23)

where
E0 =

∑
16m6M

∑
16n6N

|ambn|(P/(mn))1−21−k+ε

and

E1 =
∑

16m6M

∑
n∈N
|ambn|

wk(r)P (mn)−1 logP

1 + (P/(mn))k|(mn)kα− b/r|
.

In view of our hypotheses concerning (am) and (bn), one plainly has

E0 � P 1−21−k+ε(MN)21−k
. (3.24)

Also, it is evident that
E1 � P (logP )2E2, (3.25)

where

E2 =
∑

16m6M

∑
n∈N

wk(r)(mn)−1

1 + (P/(mn))k|(mn)kα− b/r|
. (3.26)

We now follow a similar path to that taken in the proof of the previous lemma. For each integer m
with 1 6 m 6 M , we apply Dirichlet’s approximation theorem to deduce the existence of c ∈ Z and
s ∈ N with

(c, s) = 1, 1 6 s 6 (P/(mN))k(1−21−k) and |smkα− c| 6 (P/(mN))k(21−k−1). (3.27)

By combining (3.22) and (3.27), we obtain

|rnkc− sb| 6 rnk(P/(mN))k(21−k−1) + 1
2s(P/(mn))k(21−k−1)

6 1
2 + 1

3 (P/m)k(22−k−1)(nN)k(1−21−k),

whence by (3.21) it follows that
|rnkc− sb| < 1.

Thus we have
b

rnk
=
c

s
, r =

s

(s, nk)
,

and so by (3.26),

E2 =
∑

16m6M

m−1(1 + (P/m)k|mkα− c/s|)−1
∑
n∈N

wk(s/(s, nk))n−1.

The innermost sum may be evaluated by means of Lemma 2.3, and thus we obtain

E2 �
∑

16m6M

sεwk(s) logP

m(1 + (P/m)k|mkα− c/s|)
. (3.28)

We next defineM to be the set of natural numbers m with 1 6 m 6M such that the integers c and
s defined in (3.27) satisfy

1 6 s 6 1
3 (P/(MN))k21−k

and |smkα− c| 6 1
3 (P/(MN))k21−k

(P/m)−k. (3.29)

In view of (2.2) and (3.28), we find that

E2 �
∑
m∈M

sεwk(s) logP

m(1 + (P/m)k|mkα− c/s|)
+ P ε−21−k

(MN)21−k
. (3.30)
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When a and q satisfy (3.1) and m ∈M, it follows from (3.29) that

|smka− qc| 6 smkP−k/2 + 1
3q(P/(MN))k21−k

(P/m)−k

6 2
3P

1
2k(22−k−1)Mk(1−21−k)N−k21−k

,

whence by the second condition of (3.21) we obtain

|smka− qc| < 1.

Consequently,
c

smk
=
a

q
and s =

q

(q,mk)
,

and thus by Lemma 2.3, we deduce that∑
m∈M

sεwk(s) logP

m(1 + (P/m)k|mkα− c/s|)
6

qε logP

1 + P k|α− a/q|
∑

16m6M

wk(q/(q,mk))

m

� qεwk(q)(logP )2

1 + P k|α− a/q|
. (3.31)

The proof of the lemma is completed by collecting together (3.23), (3.24), (3.25), (3.30) and (3.31).

Finally, we provide an estimate for an exponential sum over prime numbers.

Lemma 3.3. Let k be a natural number with k > 4, and let P be a real number with P > 2. Suppose
that α is a real number, and that there exist a ∈ Z and q ∈ N satisfying (3.1). Then one has

∑
P<p62P

e(pkα)� P 1−2−k−1+ε +
qεwk(q)1/2P (logP )4

(1 + P k|α− a/q|)1/2
.

Proof. We begin by observing that it is sufficient to estimate a weighted exponential sum. For on
writing

S(t) =
∑

P<p6t

(log p)e(pkα),

one finds by partial summation that

∑
P<p62P

e(pkα) =
S(2P )

log(2P )
+

∫ 2P

P

S(t)

t(log t)2
dt.

In order to establish the lemma, therefore, it suffices to show that for each real number P ′ with
P 6 P ′ 6 2P , one has

S(P ′)� P 1−2−k−1+ε + Φ, (3.32)

where

Φ =
qεwk(q)1/2P (logP )5

(1 + P k|α− a/q|)1/2
. (3.33)

Let µ(n) denote the Möbius function. Also, let Λ(n) denote the von Mangoldt function, defined to
be log p whenever n is the prime power ph, and zero otherwise. Then plainly, whenever P 6 P ′ 6 2P ,
one has

S(P ′) =
∑

P<n6P ′

Λ(n)e(nkα) +O(P 1/2).

We next appeal to Vaughan’s identity (see, for example, Vaughan [16]), with U = P 1/4 and V = P 1/2,
to show that whenever P 6 n 6 2P , one has

Λ(n) =
∑
dm=n

16d6V

µ(d) logm−
∑
dlm=n
16d6V
16m6U

µ(d)Λ(m)−
∑
dlm=n
16d6V
m>U
dl>V

µ(d)Λ(m).
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Thus we deduce that
S(P ′) = S1 − S2 − S3 +O(P 1/2), (3.34)

where
S1 =

∑
16d6V

µ(d)
∑

P/d<m6P ′/d

(logm)e((dm)kα), (3.35)

S2 =
∑

16v6UV

λ0(v)
∑

P/v<l6P ′/v

e((vl)kα), (3.36)

S3 =
∑

V <u6P ′/U

λ1(u)
∑

P/u<m6P ′/u
m>U

Λ(m)e((um)kα), (3.37)

and here we write
λ0(v) =

∑
dm=v

16d6V
16m6U

µ(d)Λ(m) and λ1(u) =
∑
d|u

16d6V

µ(d).

Notice in particular that

|λ1(u)| 6 τ(u) and |λ0(v)| 6
∑
m|v

Λ(m) = log v. (3.38)

The exponential sum S3 may be estimated simply by means of Lemma 3.1, owing to the conditions
(3.38). Thus, by dividing the summation over u in (3.37) into dyadic intervals, we deduce that

S3 � (logP ) max
V6M6P ′/U

(
PMε−2−k + (PM)

1
2 +ε + (logP )−1Φ

)
,

where Φ is defined in (3.33). In view of our choices for U and V , therefore, one finds that

S3 � P 1−2−k−1+ε + Φ. (3.39)

Next we estimate S2. Write

S4(Y,Z) =
∑

Y <v6Z

λ0(v)
∑

P/v<l6P ′/v

e((vl)kα).

Then by (3.36) we plainly have

S2 = S4(0, U) + S4(U, V ) + S4(V,UV ). (3.40)

In view of the conditions (3.38), we may again divide the summation over v into dyadic intervals to
deduce from Lemma 3.1 that

S4(V,UV )� P 1−2−k−1+ε + Φ. (3.41)

Moreover, one may rearrange the summation in S4(U, V ) to obtain

S4(U, V ) =
∑

P/V <l6P ′/U

∑
P/l<v6P ′/l
U<v6V

λ0(v)e((lv)kα),

whence a dyadic dissection of the summation over l now yields, again by Lemma 3.1,

S4(U, V )� P 1−2−k−1+ε + Φ. (3.42)

In order to estimate S4(0, U), we note that U2−22−k
6 P 1−22−k

, so that an application of Lemma 3.2
with N = 1 and b1 = 1 yields

S4(0, U)� P 1−21−k+εU21−k
+ Φ� P 1−2−k+ε + Φ. (3.43)
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On collecting together (3.40)-(3.43), we obtain

S2 � P 1−2−k−1+ε + Φ. (3.44)

Finally, in order to estimate S1, we write

S5(Y,Z) =
∑

Y <d6Z

µ(d)
∑

P/d<m6P ′/d

(logm)e((dm)kα),

and then observe that by (3.35) we have

S1 = S5(0, U) + S5(U, V ). (3.45)

But again rearranging the summation in S5(U, V ), we obtain

S5(U, V ) =
∑

P/V <m6P ′/U

(logm)
∑

P/m<d6P ′/m
U<d6V

µ(d)e((md)kα),

whence a dyadic dissection of the summation over m now yields, by Lemma 3.1,

S5(U, V )� P 1−2−k−1+ε + Φ. (3.46)

Also, noting again that U2−22−k
6 P 1−22−k

, an application of Lemma 3.2 with N = 1 and b1 = 1
reveals that

S5(0, U)� P 1−21−k+εU21−k
+ Φ� P 1−2−k+ε + Φ. (3.47)

Then from (3.45)-(3.47) we have

S1 � P 1−2−k−1+ε + Φ. (3.48)

The proof of the lemma is completed on combining (3.34), (3.39), (3.44) and (3.48), and recalling
our discussion surrounding (3.32).

4. Mean value estimates for exponential sums, I. In advance of our application of the Hardy-
Littlewood method for sums of powers of prime numbers, we require estimates for the mean values of
suitable exponential sums. In this section we concentrate on providing such bounds for exponential
sums over fourth powers, though certain of these estimates remain relevant to our later investigations
concerning fifth powers.

We begin by recalling a result from Vaughan [17].

Lemma 4.1. Suppose that
k > 4, s = [(k + 3)/2],

µ1 = 1, 1 > µ2 > 1− 1/k, µ2 > µj > 1/2 (2 6 j 6 s),

Pj = Pµj , ν = kµ2 − k + 1, C = C(k, ε) > 2k.

Let R(m) be a non-negative arithmetical function, and define

f0(α) =
∑

06m6CPk2

R(m)e(mα),

fj(α) =
∑

Pj<x62Pj

e(αxk) (1 6 j 6 s),

Fj(α) = fj(α)fj+1(α) . . . fs(α)f0(α) (j = 1, 2).

Then ∫ 1

0

|F1(α)|2dα� (P + P 1+ν−22−k+ε)

∫ 1

0

|F2(α)|2dα+ F1(0)2P−k(logP )2.
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Proof. On considering the underlying diophantine equations, the conclusion of the lemma is essentially
immediate from Theorem 3 of Vaughan [17], save that therein, the factor (logP )2 appearing above is
replaced by P ε. In order to replace Vaughan’s conclusion with the slightly sharper one above, a careful
examination of the proof of [17, Theorem 3] reveals that one must modify Vaughan’s treatment of the
underlying major arc contribution. Adopting the notation of [17] for the sake of concision, one observes
that the argument culminating at the top of p.450 of [17] yields

G(α) = qε−
1
k−2

∑
16h6H

( (q, h)P

1 + |β|hP k−1
+ q(q, h)

1
k−1

)
� qε−

1
k−2P 1+ν(logP )(1 + |β|P ν+k−1)−1 + P νq

k−2
k−1 +ε, (4.1)

saving a factor of P ε over the corresponding estimate recorded in Lemma 2 of [17]. On substituting the
estimate (4.1) within the argument presented on pages 450-452 of [17], one finds that the mean value
K defined in (2.21) of [17] satisfies

K � (logP )2P−k
(∑
m

R1(m)
)2

, (4.2)

the additional logarithmic factor arising in the evaluation of the mean value∫
N(q,a)

G1(α)|F (α)|2dα

at the top of p.452 of [17]. The estimate (4.2) suffices to establish the lemma in its stated form.

We prepare for later use a straightforward estimate of considerable utility.

Lemma 4.2. Let k be a natural number with k > 4, and write t = [k/2]. Let µj (1 6 j 6 t) be real
numbers with µ1 = 1 and 1

2 < µj 6 1 (2 6 j 6 t). Also, let Pj and fj(α) be as defined in the statement
of Lemma 4.1, and let g(α) be a complex-valued function, periodic with period 1, and having the property
|g(α)| 6 g(0) for α ∈ R. Finally, write

F (α) = f1(α)f2(α) . . . ft(α)g(α).

Then ∫ 1

0

|f1(α)F (α)|2dα� P 2−22−k+ε

∫ 1

0

|F (α)|2dα+ F (0)2P 2−k logP.

Proof. We apply the Hardy-Littlewood method. Write Q = P k21−k
, and recalling the notation defined

in (2.15) and (2.16), write

M(q, a) = M(q, a;Q;P k), M = M(Q;P k) and m = m(Q;P k).

By Lemma 2.1, we have

sup
α∈m
|f1(α)| � P 1−21−k+ε,

and when α ∈M(q, a) ⊆M, we have

f1(α)� wk(q)P (1 + P k|α− a/q|)−1.

Consequently, ∫ 1

0

|f1(α)F (α)|2dα� P 2−22−k+ε

∫ 1

0

|F (α)|2dα+ S, (4.3)

where

S = g(0)2
∑

16q6Q

q∑
a=1

(a,q)=1

∫
M(q,a)

wk(q)4P 4

(1 + P k|α− a/q|)4
|f2(α) . . . ft(α)|2dα.
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But since Q 6 P 1/2 and µj >
1
2 (1 6 j 6 t), we may apply Lemmata 6.1 and 6.2 of [19] in combination

with (2.2) and (2.3) to conclude that for α ∈M(q, a) ⊆M, one has

fj(α)� wk(q)Pj + q
1
2 +ε � wk(q)Pj .

Thus we deduce that

S � P 4P 2
2 . . . P

2
t g(0)2

∑
16q6Q

qwk(q)2t+2

∫ ∞
0

(1 + P kβ)−4dβ

� F (0)2P 2−k
∑

16q6Q

qwk(q)k+1. (4.4)

The proof of the lemma is completed by making use of Lemma 2.4 to estimate the sum on the right
hand side of (4.4), and then substituting the conclusion into (4.3).

For the remainder of this section, and the next, we restrict attention to the case k = 4, and fix
notation as follows. We put

λ1 = 1, λ2 =
13

16
, λ3 =

(13

16

)2

, λ4 =
(13

16

)2 91

111
, λ5 =

(13

16

)2 78

111
, (4.5)

Pj = Pλj , fj(α) =
∑

Pj<x62Pj

e(αx4) (1 6 j 6 5), (4.6)

Fj(α) = f5(α)2
4∏
i=j

fi(α) (1 6 j 6 4). (4.7)

We remark that the exponents λj recorded in (4.5) have been chosen in accordance with Theorem 3 of
Thanigasalam [14], which we record as the following lemma.

Lemma 4.3. For 1 6 j 6 4, one has∫ 1

0

|Fj(α)|2dα� P εFj(0).

We complete this section by establishing some auxiliary mean value estimates of use in certain
pruning procedures.

Lemma 4.4. When j is an integer with 1 6 j 6 5, write

Ij =

∫ 1

0

|fj(α)F1(α)|2dα.

Then for 1 6 j 6 5, one has
Ij � F1(0)2P 2

j P
−4(logP )2.

Proof. The lemma follows simply by applying Lemmata 4.1-4.3. Before proceeding further, it is useful
to make some preliminary evaluations of pertinent parameters. We define the numbers νj , for 2 6 j 6 5,

by P
νj
j−1 = P 4

j P
−3
j−1. Thus

ν2 = ν3 =
1

4
, ν4 =

31

111
and ν5 =

3

7
.

Write

Xj = P
− 1

4
j (1 6 j 6 3), X4 = P

ν4− 1
4

3 P
− 1

4
4 , X5 = P

ν4− 1
4

3 P
ν5− 1

4
4 P

− 1
2

5 .

Then since ν4 >
1
4 and P

1/2
5 = P

3/7
4 = P ν54 , we see at once that

X1 < X2 < X3 < X4 = X5.
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Moreover, in view of (4.5)-(4.7), a modest calculation reveals that

F1(0) � P 56003
14208 > P 4−0.05835, (4.8)

and also P 4F1(0)−1X4 6 P−0.0576, whence

P 4+εF1(0)−1Xj < 1 (1 6 j 6 5). (4.9)

Next put
Y2 = P 3P−4

2 , Y3 = P 3P−1
2 P−4

3 ,

and

Y4 = P 3P−1
2 P

ν4− 5
4

3 P−4
4 .

We observe that by the definition of the νj , one has Yj = (P1 . . . Pj−1)−1/4 for 2 6 j 6 4, whence

YjP
ε < 1 (2 6 j 6 4). (4.10)

We now initiate our main argument, establishing the lemma for each j in turn. Applying Lemma
4.2 to I1, and then appealing to Lemma 4.3, we obtain

I1 � P 2− 1
4 +εF1(0) + F1(0)2P−2 logP

� F1(0)2P−2(logP )(P 4+εF1(0)−1X1 + 1).

Then in view of (4.9), the conclusion of the lemma holds when j = 1.
Next applying Lemma 4.1 to estimate I2, and then employing Lemmata 4.2 and 4.3 in order, we

obtain

I2 =

∫ 1

0

|f1(α)f2(α)F2(α)|2dα

� P 1+ε(P
2− 1

4 +ε
2 F2(0) + F2(0)2P−2

2 logP ) + F1(0)2P 2
2P
−4(logP )2

� F1(0)2P 2
2P
−4(P 4+εF1(0)−1X2 + Y2P

ε + (logP )2).

Then by (4.9) and (4.10), the conclusion of the lemma holds also when j = 2.
Similarly, we utilise Lemma 4.1 twice, and then apply Lemmata 4.2 and 4.3 to reveal that

I3 =

∫ 1

0

|f1(α)f2(α)f3(α)F3(α)|2dα

� PP2P
2− 1

4 +ε
3 F3(0) + F1(0)2P 2

3P
−4((Y3 + Y2)P ε + (logP )2)

� F1(0)2P 2
3P
−4(P 4+εF1(0)−1X3 + (Y3 + Y2)P ε + (logP )2).

The desired bound for j = 3 therefore follows again from (4.9) and (4.10).
Repeating the application of Lemma 4.1 thrice, and then applying Lemmata 4.2 and 4.3 again, we

now obtain

I4 =

∫ 1

0

|f1(α)f2(α)f3(α)f4(α)F4(α)|2dα

� PP2P
1+ν4− 1

4
3 P

2− 1
4 +ε

4 F4(0) + F1(0)2P 2
4P
−4((Y4 + Y3 + Y2)P ε + (logP )2)

� F1(0)2P 2
4P
−4(P 4+εF1(0)−1X4 + (Y4 + Y3 + Y2)P ε + (logP )2).

The desired bound for j = 4 consequently follows again from (4.9) and (4.10).
Finally we turn to the estimation of I5. Applying now Lemma 4.1 four times, we have

I5 =

∫ 1

0

|f1(α)f2(α)f3(α)f4(α)f5(α)3|2dα

�PP2P
1+ν4− 1

4
3 P

1+ν5− 1
4 +ε

4

∫ 1

0

|f5(α)|6dα

+ F1(0)2P 2
5P
−4((Y4 + Y3 + Y2)P ε + (logP )2). (4.11)
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But by Hua’s inequality (see Lemma 2.5 of [19]) and Schwarz’s inequality,∫ 1

0

|f5(α)|6dα�
(∫ 1

0

|f5(α)|4dα
)1/2(∫ 1

0

|f5(α)|8dα
)1/2

� P
7
2 +ε

5 .

Thus, by (4.9)-(4.11) we deduce that

I5 � F1(0)2P 2
5P
−4(P 4+εF1(0)−1X5 + (Y4 + Y3 + Y2)P ε + (logP )2)

� F1(0)2P 2
5P
−4(logP )2,

and so the desired bound follows for j = 5.
This completes the proof of the lemma.

5. The Waring-Goldbach problem for fourth powers. We now complete the proof of Theorem 1,
retaining the notation introduced in the previous section. Let s be a natural number with s > 14, and
let n be a sufficiently large integer with n ≡ s (mod 240). Since n1 = n− (s− 14) · 74 satisfies n1 ≡ 14
(mod 240), we find that n is represented as the sum of s fourth powers of prime numbers whenever n1

is the sum of 14 fourth powers of prime numbers. Thus, in order to establish that H(4) 6 14, it suffices
to show that all sufficiently large natural numbers m, with m ≡ 14 (mod 240), are the sum of 14 fourth
powers of prime numbers.

Consider then a sufficiently large natural number n with n ≡ 14 (mod 240), and write

P = 1
2n

1/4.

Let R(n) denote the number of representations of n in the form

n = p4
1 + p4

2 + · · ·+ p4
14,

with
P < pj 6 2P (1 6 j 6 4), Pi < p2i+1, p2i+2 6 2Pi (2 6 i 6 4),

P5 < pl 6 2P5 (11 6 l 6 14).

We aim to apply the Hardy-Littlewood method to establish that R(n) > 0, whence Theorem 1 follows
according to the above discussion. To this end we introduce the exponential sums

gj(α) =
∑

Pj<p62Pj

e(p4α) (1 6 j 6 5),

and write
G1(α) = g1(α)g2(α)g3(α)g4(α)g5(α)2.

When B ⊆ [0, 1), define

R(n;B) =

∫
B

g1(α)2G1(α)2e(−nα)dα. (5.1)

Then by orthogonality, we have R(n) = R(n; [0, 1)).
Next we define the Hardy-Littlewood dissections fundamental to our application of the circle method.

We take L = (logP )2000, and define N to be the union of the intervals

N(q, a) = {α ∈ [0, 1) : |α− a/q| 6 LP−4}

with 0 6 a 6 q 6 L and (a, q) = 1. Notice that the arcs N(q, a) comprising N are pairwise disjoint. We
write also n = [0, 1) \N, and note that

R(n) = R(n;N) +R(n; n). (5.2)

We analyse the minor arcs n by means of a further dissection, and in this context we recall the notation
defined in (2.15) and (2.16), and write

M(q, a) = M(q, a;P 1/4;P 4), M = M(P 1/4;P 4), m = m(P 1/4;P 4),
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We remark that m ⊆ n.
We define the function Ψ(α) for α ∈M by taking

Ψ(α) = qδw4(q)(1 + P 4|α− a/q|)−1,

for α ∈ M(q, a) ⊆ M, where we write δ = 10−2. In particular, it follows from (2.2) that when
α ∈M(q, a) ⊆M and α ∈ n, then one has

Ψ(α)� (q + P 4|qα− a|)δ− 1
4 � L−1/5.

Consequently, by Lemma 3.3, when α ∈M ∩ n one has

g1(α)� P 1− 1
32 +ε + P (logP )4Ψ(α)1/2

� P 1− 1
32 +ε + P (logP )4L−1/20Ψ(α)1/4. (5.3)

Meanwhile, when α ∈ m, we may apply Dirichlet’s approximation theorem to deduce the existence of
a ∈ Z and q ∈ N satisfying the conditions (3.1), and necessarily one has either

q > P 1/4 or |qα− a| > P−15/4.

In this situation it therefore follows from (2.2) that

w4(q)1/2P

(1 + P 4|α− a/q|)1/2
� P

(q + P 4|qα− a|)1/8
� P 1− 1

32 ,

whence by Lemma 3.3,

sup
α∈m
|g1(α)| � P 1− 1

32 +ε. (5.4)

On substituting (5.3) and (5.4) into (5.1), we deduce that

|R(n; n)| 6
∫
n

|g1(α)G1(α)|2dα� K1 +K2, (5.5)

where

K1 = P 2− 1
16 +ε

∫ 1

0

|G1(α)|2dα (5.6)

and

K2 = P 2(logP )−150

∫
M∩n

Ψ(α)1/2|G1(α)|2dα. (5.7)

But on considering the underlying diophantine equations, it follows from Lemma 4.3 that∫ 1

0

|G1(α)|2dα 6
∫ 1

0

|F1(α)|2dα� P εF1(0).

A comparison between the definitions of F1(α) and G1(α) reveals that

G1(0) � F1(0)(logP )−6, (5.8)

and thus we deduce from (4.8) and (5.6) that

K1 � G1(0)2(F1(0)−1P 2− 1
16 +ε)� G1(0)2P−2.004. (5.9)

We turn our attention next to the estimation of K2. By applying Hölder’s inequality within (5.7),
we obtain ∫

M∩n
Ψ(α)1/2|G1(α)|2dα�

(∫
M

Ψ(α)3|g5(α)|2dα
)1/6 5∏

j=1

J
1/6
j , (5.10)
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where

Jj =

∫ 1

0

|gj(α)G1(α)|2dα (1 6 j 6 5).

But on recalling the definition of Ij from the statement of Lemma 4.4, and considering the underlying
diophantine equations, it follows from the latter lemma that

Jj 6 Ij � F1(0)2P 2
j P
−4(logP )2 (1 6 j 6 5).

Moreover, since P 1/4 < P5, we find from Lemma 2.5 that∫
M

Ψ(α)3|g5(α)|2dα 6
∫
M(P5;P 4)

Ψ(α)3|g5(α)|2dα� P 2
5P
−4.

Thus we deduce from (5.10) that

∫
M∩n

Ψ(α)1/2|G1(α)|2dα� (P 2
5P
−4)1/6

5∏
j=1

(
F1(0)2P 2

j P
−4(logP )2

)1/6
� F1(0)2P−4(logP )2.

Consequently, on recalling (5.8) and substituting into (5.7), we arrive at the estimate

K2 � (P 2(logP )−150)(G1(0)2P−4(logP )14)� G1(0)2P−2(logP )−100. (5.11)

Finally, on collecting together (5.5), (5.9) and (5.11), we may conclude that

R(n; n)� G1(0)2P−2(logP )−100. (5.12)

Next we investigate the contribution to R(n) arising from the major arcs N. It transpires that this
is essentially a routine exercise using the methods of Chapters 7 and 8 of Hua [8]. Write

S∗(q, a) =

q∑
r=1

(r,q)=1

e(ar4/q) and uj(β) =

∫ 2Pj

Pj

e(βt4)

log t
dt (1 6 j 6 5).

Also, let ϕ(q) denote Euler’s totient function. Then, as a consequence of the Siegel-Walfisz theorem,
one may show that for α ∈ N(q, a) ⊆ N, one has

gj(α) = ϕ(q)−1S∗(q, a)uj(α− a/q) +O(PjL
−5) (1 6 j 6 5)

(this is essentially Lemma 7.15 of Hua [8]). Since the measure of N is plainly O(L3P−4), on substituting
the above estimate into (5.1), a simple calculation reveals that

R(n;N) = S(n;L)J(n;LP−4) +O(G1(0)2P−2L−1), (5.13)

where

S(n;L) =
∑

16q6L

q∑
a=1

(a,q)=1

(
ϕ(q)−1S∗(q, a)

)14
e(−an/q) (5.14)

and

J(n;W ) =

∫ W

−W
u1(β)4u2(β)2u3(β)2u4(β)2u5(β)4e(−nβ)dβ. (5.15)

In order to dispose of the singular series S(n;L), we first note that by Lemma 8.5 of [8], whenever
(a, q) = 1 one has

S∗(q, a)� q
1
2 +ε,
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whence ∑
q>L

q∑
a=1

(a,q)=1

(ϕ(q)−1S∗(q, a))14e(−an/q)�
∑
q>L

ϕ(q)−13q7+ε � L−4.

Then on writing

S(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(ϕ(q)−1S∗(q, a))14e(−an/q),

we deduce that the series S(n) is absolutely convergent, and we find from (5.14) that

S(n)−S(n;L)�
∑
q>L

ϕ(q)−13q7+ε � L−4,

whence

S(n;L) = S(n) +O(L−4). (5.16)

Moreover, Theorem 12 of [8] assures us that

S(n)� 1 (5.17)

for all integers n with n ≡ 14 (mod 240).
We begin our investigation of the singular integral J(n;LP−4) by noting that a combination of a

trivial estimate, together with a partial integration, yields

uj(β)� Pj(logPj)
−1(1 + P 4

j |β|)−1 (1 6 j 6 5).

Then on writing

J(n) =

∫ ∞
−∞

u1(β)4u2(β)2u3(β)2u4(β)2u5(β)4e(−nβ)dβ,

we find that

J(n)� (P/ logP )2G1(0)2

∫ ∞
0

dβ

(1 + P 4β)4
� P−2G1(0)2(logP )−2, (5.18)

and from (5.15) we obtain

J(n)− J(n;LP−4)� P 2G1(0)2

∫ ∞
LP−4

dβ

(1 + P 4β)4
� P−2G1(0)2L−3. (5.19)

Since, by a change of variable,

uj(β) =

∫ (2Pj)
4

P 4
j

t−3/4e(βt)

log t
dt,

an application of Fourier’s integral formula reveals that

J(n) =

∫
D

(ñt2t3 . . . t14)−3/4

(log ñ)(log t2)(log t3) . . . (log t14)
dt2dt3 . . . dt14, (5.20)

where we write ñ = n − t2 − t3 − · · · − t14, and where the region D of integration is the set of points
(t2, . . . , t14) ∈ R13 such that

P 4 6 ñ, t2, t3, t4 6 (2P )4,

P 4
j 6 t2j+1, t2j+2 6 (2Pj)

4 (2 6 j 6 4), P 4
5 6 ti 6 (2P5)4 (11 6 i 6 14). (5.21)

Let D0 be the set of points (t2, . . . , t14) ∈ R13 such that

P 4 6 t2, t3, t4 6 2P 4,



THE WARING-GOLDBACH PROBLEM 23

and the conditions (5.21) hold. On noting that whenever (t2, . . . , t14) ∈ D0, one has P 4 6 ñ 6 (2P )4,
we find that D0 ⊆ D. Consequently, we deduce from (5.20) that

J(n)�
(
(PF1(0))8

)−3/4
(logP )−14

∫
D0

dt2dt3 . . . dt14

� (PF1(0))−6(logP )−14P 4F1(0)8.

On recalling (5.8), (5.18) and (5.19), we therefore conclude that

J(n;LP−4) � G1(0)2P−2(logP )−2. (5.22)

We now reach the crescendo of our argument for sums of fourth powers. On combining (5.13), (5.16),
(5.17) and (5.22), we conclude that for every large integer n with n ≡ 14 (mod 240), one has

R(n;N) = S(n)J(n;LP−4) +O(G1(0)2P−2L−2)� G1(0)2P−2(logP )−2.

Consequently, for each such n it follows from (5.2) and (5.12) that

R(n) = R(n;N) +R(n; n)� G1(0)2P−2(logP )−2,

whence R(n) > 0. This completes the proof of Theorem 1.

6. Mean value estimates for exponential sums, II. The remainder of this paper is devoted to
the proof of Theorem 2, and so henceforth we restrict attention to the case k = 5. In this section
we augment the mean value estimates of §4 with additional estimates required in the course of our
deliberations. We fix notation as follows.

λj =

(
33

40

)j−1

(1 6 j 6 6), (6.1)

λ7 =

(
33

40

)5

· 136

163
, λ8 =

(
33

40

)5

· 576

815
, λ9 =

(
33

40

)5

· 512

815
, (6.2)

Pj = Pλj , fj(α) =
∑

Pj<x62Pj

e(αx5) (1 6 j 6 9), (6.3)

Fj(α) = f9(α)2
8∏
i=j

fi(α) (1 6 j 6 8). (6.4)

The exponents λj result from applying the algorithm described in (3.10)-(3.12) and (3.28) of Vaughan
[17] together with the theorem of Thanigasalam [15]. Thus, initiating the process with θ9 = 8/9 and
α8 = 5/9, we define αj , νj and θj recursively as j decreases by

νj =

{
4−4αj
7+αj

, when j = 8, 7,

1
8 , when 6 > j > 2,

θj = 1
5 (4 + νj), αj−1 = 1

5 + θjαj .

We remark here that, with a modicum of computation, one finds that

α1 =
83151270787

83456000000
> 1− 0.0036514. (6.5)

The values of λj recorded in (6.1) and (6.2) are then obtained recursively by means of the relation
λj = θjλj−1 (2 6 j 6 9), starting from the initial value λ1 = 1. This definition of the λj leads us to
the following conclusion, in view of the work of Thanigasalam [15] and Vaughan [17].
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Lemma 6.1. We have ∫ 1

0

|Fj(α)|2dα� P εFj(0) (1 6 j 6 8).

Proof. When j = 8, the conclusion of the lemma is immediate from the theorem of Thanigasalam [15].
When 1 6 j 6 7, meanwhile, one may apply the method of the proof of (3.31) of Vaughan [17] (see, in
particular, the line preceding (3.20) of [17]) in order to recursively establish the desired conclusion as j
decreases from 7 to 1.

We note that a conclusion slightly sharper than that presented may be established by applying the
methods of Thanigasalam [14]. However, such estimates do not enhance or simplify the deliberations
of this paper.

As in our discussion of fourth powers, we require some auxiliary mean value estimates.

Lemma 6.2. When j is an integer with 1 6 j 6 9, write

Ij =

∫ 1

0

|fj(α)F1(α)|2dα.

Then for 1 6 j 6 9, one has
Ij � F1(0)2P 2

j P
−5(logP )2.

Proof. We begin by recording some simple estimates, and associated notation, that facilitate our sub-
sequent discussion. Note first that, with α1 defined as in (6.5), we find from (6.3) and (6.4) that

F1(0) � P 5α1 . (6.6)

Thus we find that
P 5F1(0)−1P

−1/8
9 6 P−0.0117,

whence
P 5+εF1(0)−1P

−1/8
j < 1 (1 6 j 6 9). (6.7)

Next we write
Yj = P 5P−5

j Fj(0)F1(0)−1 (2 6 j 6 6),

and we observe that for 2 6 j 6 6, one has

Yj �
j−1∏
i=1

(P 4
i P
−5
i+1) =

j−1∏
i=1

P
−1/8
i . (6.8)

For later convenience, we also define Z0 = 0, and when 1 6 j 6 6 we put

Zj = (logP )2 + P ε
j∑
i=2

Yj .

In view of (6.8), of course, we have

Zj � (logP )2 (0 6 j 6 6). (6.9)

We establish the lemma for 1 6 j 6 6 following the strategy adopted in the proof of Lemma 4.4. A
(j − 1)-fold application of Lemma 4.1 to estimate Ij reveals that for 1 6 j 6 6, one has

Ij � (F1(0)/Fj(0))1+ε

∫ 1

0

|fj(α)Fj(α)|2dα+ F1(0)2P 2
j P
−5Zj−1. (6.10)

On applying Lemma 4.2 in combination with Lemma 6.1 to estimate the integral on the right hand side
of (6.10), we obtain for 1 6 j 6 6 the upper bound

Ij � (F1(0)/Fj(0))P
2− 1

8 +ε
j Fj(0) + F1(0)2P 2

j P
−5Zj

� F1(0)2P 2
j P
−5(P 5+εF1(0)−1P

−1/8
j + Zj).
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In view of (6.7) and (6.9), therefore, we may conclude that

Ij � F1(0)2P 2
j P
−5(logP )2 (1 6 j 6 6),

which suffices to establish the conclusion of the lemma in these cases.
When 7 6 j 6 9, we apply Lemma 4.1 five times to obtain

Ij � (F1(0)/F6(0))1+ε

∫ 1

0

|fj(α)F6(α)|2dα+ F1(0)2P 2
j P
−5Z5. (6.11)

We first consider the situation in which j = 7. Here, on applying Lemma 4.2 to the integral on the
right hand side of (6.11), taking g(α) = f6(α)f9(α)2, we obtain∫ 1

0

|f7(α)F6(α)|2dα =

∫ 1

0

|f7(α)2f8(α)g(α)|2dα

� P
2− 1

8 +ε
7

∫ 1

0

|F6(α)|2dα+ F6(0)2P ε−3
7 .

Applying Lemma 6.1 to the integral on the right hand side of the last inequality, and substituting into
(6.11), we deduce that

I7 � F1(0)2P 2
7P
−5(P 5+εF1(0)−1P

−1/8
7 + P 5+εP−5

7 F6(0)F1(0)−1 + Z5),

and hence, on recalling (6.7) and (6.9), the desired bound for j = 7 is confirmed by observing that

P 5P−5
7 F6(0)F1(0)−1 = P 4(P2P3P4P5)−1P−5

7 < P−0.12. (6.12)

We dispose of the situations in which j = 8 and 9 through yet another application of the Hardy-
Littlewood method, and in this context we must define further Hardy-Littlewood dissections. When

j = 8 and 9, put Qj = P
5/16
j , and recalling the notation defined in (2.15) and (2.16), write

Mj(q, a) = M(q, a;Qj ;P
5
j ), Mj = M(Qj ;P

5
j ), mj = m(Qj ;P

5
j ).

According to Lemma 2.1, we have

sup
α∈mj

|fj(α)| � P
1− 1

16 +ε
j , (6.13)

and also, when α ∈Mj(q, a) ⊆Mj , one has

fj(α)� w5(q)Pj . (6.14)

In particular, therefore, on combining (6.13) with the conclusion of Lemma 6.1, we find that∫
mj

|fj(α)F6(α)|2dα� P
2− 1

8 +ε
j F6(0). (6.15)

Next suppose temporarily that α ∈Mj(q, a) ⊆Mj . Observe that P9 = P
8/9
8 , and that

1 6 q 6 Qj 6 P
5/16
8 , |qα− a| 6 QjP

−5
j 6 P

−75/16
9 = P

−25/6
8 .

Then on recalling (2.2) we find that

w5(q)P8

1 + P 5
8 |α− a/q|

> q1/2 P8

q + P 5
8 |qα− a|

� q
1
2 +ε,

whence by Lemmata 6.1 and 6.2 of [19], one has

f8(α)� w5(q)P8

1 + P 5
8 |α− a/q|

+ q
1
2 +ε � w5(q)P8

1 + P 5
8 |α− a/q|

. (6.16)



26 KAWADA AND WOOLEY

By a similar argument, we obtain

f9(α)� w5(q)P9 + q
1
2 +ε � w5(q)P9. (6.17)

Furthermore, again applying Lemmata 6.1 and 6.2 of Vaughan [19] in the sharper form permitted by
the proof of Theorem 4.1 of [19], we have

f7(α)� w5(q)P7

1 + P 5
7 |α− a/q|

+ q
1
2 +ε(1 + P 5

7 |α− a/q|)
1
2

� w5(q)P7

1 + P 5
7 |α− a/q|

+ q
1
2 +ε(1 + P 5

8 |α− a/q|)
1
2 (P7/P8)

5
2 . (6.18)

Combining the bounds (6.14) and (6.16)-(6.18), together with the trivial bound f6(α) = O(P6), we
deduce that ∫

Mj

|fj(α)F6(α)|2dα� I ′j + I ′′j , (6.19)

where

I ′j = P 2
j F6(0)2

∑
16q6Qj

qw5(q)10

∫ ∞
0

dβ

(1 + P 5
7 β)2

, (6.20)

and

I ′′j = P 2
j P

2
6P

2
8P

4
9 (P7/P8)5

∑
16q6Qj

q2+εw5(q)8

∫ 1

0

dβ

1 + P 5
8 β

. (6.21)

Applying Lemma 2.4 within (6.20), we find that

I ′j � P 2
j F6(0)2P−5

7 . (6.22)

Meanwhile, also by Lemma 2.4,∑
16q6Qj

q2+εw5(q)8 � Q
3
5 +ε
j

∑
16q6Qj

q
7
5w5(q)8 � P

3
16 +ε

8 ,

whence by (6.21), on noting also that P8 = P
72/85
7 , we have

I ′′j � P 2
j F6(0)2P 3

7P
ε−10+ 3

16
8 � P 2

j F6(0)2P−5
7 . (6.23)

On combining (6.15), (6.19), (6.22) and (6.23), we arrive at the upper bound∫ 1

0

|fj(α)F6(α)|2dα =

∫
mj

|fj(α)F6(α)|2dα+

∫
Mj

|fj(α)F6(α)|2dα

� P
2− 1

8 +ε
j F6(0) + P 2

j F6(0)2P−5
7 ,

valid for j = 8 and 9. But on recalling (6.11), the latter bound implies that

Ij � F1(0)2P 2
j P
−5(P 5+εF1(0)−1P

−1/8
j + P 5+εP−5

7 F6(0)F1(0)−1 + Z5).

Hence the desired bounds for j = 8 and 9 follow by virtue of the inequalities (6.7), (6.9) and (6.12).
This completes the proof of the lemma.

We may now prepare the key minor arc estimate, but before announcing this result we require some
notation. We define

gj(α) =
∑

Pj<p62Pj

e(p5α) (1 6 j 6 9), (6.24)

and then write

G2(α) = g9(α)2
8∏
i=2

gi(α). (6.25)

We define our primary Hardy-Littlewood dissection as follows. We write L = (logP )10000, and define
N to be the union of the arcs

N(q, a) = {α ∈ [0, 1) : |α− a/q| 6 LP−5},

with 0 6 a 6 q 6 L and (a, q) = 1. We then put n = [0, 1) \N.
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Lemma 6.3. Let H(α) be a complex-valued function of α, periodic with period 1. Suppose that H(α)
has the property that whenever α is a real number, and a ∈ Z and q ∈ N satisfy

(a, q) = 1, 1 6 q 6 P 5/2 and |qα− a| 6 P−5/2, (6.26)

then one has

H(α)� P 1−c+ε +
qεw5(q)1/2P (logP )5

(1 + P 5|α− a/q|)1/2
,

with c = 0.0183. Suppose also that H ⊆ (P, 2P ] ∩ Z, and write

h(α) =
∑
x∈H

e(αx5).

Then we have ∫
n

|H(α)h(α)g1(α)G2(α)2|dα� G2(0)2P−2(logP )−100.

We remark that the conclusion of the lemma remains valid for any c satisfying c > 5 − 5α1, where
α1 is given by (6.5).

The proof of Lemma 6.3. We apply a pruning procedure, and hence require a further Hardy-Littlewood
dissection. Recalling the notation defined in (2.15) and (2.16), we write

M(q, a) = M(q, a;P 10c;P 5), M = M(P 10c;P 5), m = m(P 10c;P 5).

Plainly, one has m ⊆ n.
We define the function Ψ(α) for α ∈M by taking

Ψ(α) = qδw5(q)(1 + P 5|α− a/q|)−1,

when α ∈ M(q, a) ⊆ M, where we write δ = 10−2. In view of (2.2), whenever α ∈ M(q, a) ⊆ M and
α ∈ n, one has

Ψ(α)� (q + P 5|qα− a|)δ− 1
5 � L−

1
10 ,

and thus our hypotheses concerning the function H(α) ensure that for α ∈M ∩ n, one has

H(α)� P 1−c+ε + P (logP )5Ψ(α)1/2

� P 1−c+ε + P (logP )5L−1/50Ψ(α)3/10. (6.27)

Meanwhile, when α ∈ m, we may apply Dirichlet’s approximation theorem to deduce the existence of
a ∈ Z and q ∈ N satisfying the conditions (6.26), and necessarily one has either

q > P 10c or |qα− a| > P 10c−5.

In this situation it follows from (2.2) that

w5(q)1/2P

(1 + P 5|α− a/q|)1/2
� P

(q + P 5|qα− a|)1/10
� P 1−c,

and so our hypotheses on H(α) ensure that

sup
α∈m
|H(α)| � P 1−c+ε. (6.28)

On exploiting the estimates (6.27) and (6.28) within the mean value under consideration, we deduce
that ∫

n

|H(α)h(α)g1(α)G2(α)2|dα� K1 +K2, (6.29)
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where

K1 = P 1−c+ε
∫ 1

0

|h(α)g1(α)G2(α)2|dα (6.30)

and

K2 = P (logP )−150

∫
M∩n

Ψ(α)3/10|h(α)g1(α)G2(α)2|dα. (6.31)

We first estimate K1, noting that by considering the underlying diophantine equations, it follows
from Lemma 6.1 that ∫ 1

0

|h(α)G2(α)|2dα�
∫ 1

0

|F1(α)|2dα� P εF1(0).

Similarly, one has also ∫ 1

0

|g1(α)G2(α)|2dα�
∫ 1

0

|F1(α)|2dα� P εF1(0),

and thus an application of Schwarz’s inequality yields the upper bound∫ 1

0

|h(α)g1(α)G2(α)2|dα�
(∫ 1

0

|h(α)G2(α)|2dα
)1/2(∫ 1

0

|g1(α)G2(α)|2dα
)1/2

� P εF1(0).

But a comparison of (6.3), (6.4) and (6.24), (6.25) reveals that

G2(0) � F1(0)P−1(logP )−9. (6.32)

Then on recalling (6.5) and (6.6), we deduce from (6.30) that

K1 � G2(0)2P ε−2(P 5−cF1(0)−1)� G2(0)2P−2.00004. (6.33)

Now we turn our attention to the estimation of K2. By Hölder’s inequality, one has∫
M

Ψ(α)3/10|h(α)g1(α)G2(α)2|dα� K
1
10
3

9∏
j=1

J
1
10
j , (6.34)

where

K3 =

∫
M

Ψ(α)3|g9(α)|2dα,

and for 1 6 j 6 5,

Jj =

∫ 1

0

|gj(α)h(α)G2(α)|2dα,

while for 6 6 j 6 9,

Jj =

∫ 1

0

|gj(α)g1(α)G2(α)|2dα.

But by considering the underlying diophantine equations, we deduce from Lemma 6.2 that

Jj 6 Ij � F1(0)2P 2
j P
−5(logP )2 (1 6 j 6 9).

Meanwhile, since P 10c < P9, we find that Lemma 2.5 supplies the bound∫
M

Ψ(α)3|g9(α)|2dα� P 2
9P
−5.

Thus we may conclude from (6.32) and (6.34) that∫
M

Ψ(α)3/10|h(α)g1(α)G2(α)2|dα� F1(0)2P−5(logP )2

� G2(0)2P−3(logP )20,

whence by (6.31) we arrive at the estimate

K2 � G2(0)2P−2(logP )−100. (6.35)

The conclusion of the lemma is established by combining (6.29), (6.33) and (6.35).
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7. The Waring-Goldbach problem for fifth powers. In this section we complete the bulk of the
work associated with the proof of Theorem 2, retaining the notation introduced in the previous section.
We note first that in order to establish that H(5) 6 21, it suffices to show that all sufficiently large odd
numbers are the sum of 21 fifth powers of prime numbers. For when s is a natural number with s > 21,
and n is a sufficiently large integer with n ≡ s (mod 2), then n1 = n − (s − 21) · 35 satisfies n1 ≡ 1
(mod 2). Consequently, n is represented as the sum of s fifth powers of prime numbers whenever n1

is the sum of 21 fifth powers of prime numbers. Suppose temporarily that all sufficiently large odd
numbers are indeed the sum of 21 fifth powers of prime numbers. Then it follows that whenever s > 22,
then all sufficiently large integers are the sum of s fifth powers of prime numbers. For when s > 22 and
n is a sufficiently large natural number, then one of n− (s− 21) · 35 and n− (s− 22) · 35 − 25 is odd,
and hence equal to the sum of 21 fifth powers of prime numbers.

Consider then a sufficiently large odd natural number n, and write

P = 1
2n

1/5.

When X ⊆ [P, 2P ]∩Z, we denote by R(n,X) the number of representations of the natural number n in
the form

n = x5 + p5
1 + p5

2 + · · ·+ p5
20, (7.1)

with
x ∈ X, Pj < p2j−1, p2j 6 2Pj (1 6 j 6 8), P9 < pi 6 2P9 (17 6 i 6 20). (7.2)

Write X0 for the set of prime numbers p with P < p < 2P . Our aim is to establish Theorem 2 by
showing that R(n,X0) > 0.

Next put
z = (2P )1/3 and z1 = (2P )1−32c, (7.3)

where c = 0.0183 is the constant arising in the statement of Lemma 6.3. Define also

Π(z) =
∏
p<z

p.

We introduce the sets of integers

X1 = {P < x < 2P : (x,Π(z)) = 1},
X2 = {P < x < 2P : x = $1$2 and z 6 $1 < z1},
X3 = {P < x < 2P : x = $1$2 and z1 6 $1 6 $2},

where here, and hereafter, we employ the letter $ with subscripts to denote a prime number. On noting
that no natural number smaller than 2P can be a product of more than two primes greater than or
equal to z, it is apparent that

X1 = X0 ∪ X2 ∪ X3.

Since X0, X2 and X3 are pairwise disjoint, we conclude that

R(n,X0) = R(n,X1)−R(n,X2)−R(n,X3). (7.4)

We first investigate R(n,X2). Write

h1(α) =
∑
x∈X2

e(αx5),

and when B ⊆ [0, 1), define

R(n,X2;B) =

∫
B

h1(α)g1(α)2G2(α)2e(−nα)dα.

Then by orthogonality,

R(n,X2) = R(n,X2; [0, 1)) = R(n,X2;N) +R(n,X2; n). (7.5)
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We are able to dispose of the contribution to R(n,X2) arising from n almost immediately. Suppose
that α is a real number, and that a ∈ Z and q ∈ N satisfy (6.26). Then by means of a familiar dyadic
dissection argument, it follows from Lemma 3.1 that

h1(α) =
∑

P/z1<$2<2P/z

∑
P/$2<$1<2P/$2

z6$1<z1

e(($1$2)5α)

� (logP ) sup
P/z16M6P/z

(
PMε− 1

32 + (PM)
1
2 +ε +

qεw5(q)1/2P (logP )4

(1 + P 5|α− a/q|)1/2

)
� P 1−c+ε +

qεw5(q)1/2P (logP )5

(1 + P 5|α− a/q|)1/2
.

It follows that h1(α) satisfies the hypotheses imposed on the function H(α) in the statement of Lemma
6.3, and consequently we deduce from that lemma that

R(n,X2; n) 6
∫
n

|h1(α)g1(α)2G2(α)2|dα� G2(0)2P−2(logP )−100. (7.6)

The estimation of the contribution of the major arcs N to R(n,X2), while routine, requires some
preparation and associated notation. Write

S∗(q, a) =

q∑
r=1

(r,q)=1

e(ar5/q) and uj(β) =

∫ 2Pj

Pj

e(βt5)

log t
dt (1 6 j 6 9). (7.7)

Then as a consequence of the Siegel-Walfisz theorem (see Lemma 7.15 of Hua [8]), one has for α ∈
N(q, a) ⊆ N that

gj(α) = ϕ(q)−1S∗(q, a)uj(α− a/q) +O(PjL
−5) (1 6 j 6 9). (7.8)

The estimation of h1(α) for α ∈ N is best accomodated within a technical lemma.

Lemma 7.1. Suppose that η1 and η2 are real numbers with 0 < η1 < η2 6 1
2 . Write vj = (2P )ηj

(j = 1, 2), and define

u(β; η1, η2) =

∫ 2P

P

Ξ(t; η1, η2)
e(βt5)

log t
dt,

where

Ξ(t; η1, η2) =
∑

v16$1<v2
$16

√
t

log t

$1 log(t/$1)
.

Suppose further that α is a real number with α = β+ a/q, where (a, q) = 1, 1 6 q 6 L and |β| 6 LP−5.
Then one has ∑

v16$1<v2

∑
P/$1<$2<2P/$1

$2>$1

e(($1$2)5α) = ϕ(q)−1S∗(q, a)u(β; η1, η2) +O(PL−5). (7.9)

Moreover, with u1(β) defined as in (7.7), one has

u(β; η1, η2) = log

(
η−1

1 − 1

η−1
2 − 1

)
u1(β) +O(P (logP )−2). (7.10)

Proof. For a pair of primes ($1, $2) occurring in the summation of (7.9), our hypotheses on v1 and v2

ensure that $1 <
√

2P , whence $2 >
√
P/2. Thus, with an argument similar to that leading to (7.8),

we deduce that ∑
P/$1<$2<2P/$1

$2>$1

e(($1$2)5α) = T +O(P$−1
1 L−6), (7.11)
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where

T = ϕ(q)−1S∗(q, a$5
1)

∫ 2P/$1

max{P/$1,$1}

e(u5$5
1β)

log u
du. (7.12)

On noting that q 6 L < v1 6 $1, we find that (q,$1) = 1, and thus a multiplicative change of variables
reveals that S∗(q, a$5

1) = S∗(q, a). Employing next the change of variables t = $1u within the integral
on the right hand side of (7.12), we find that

T = ϕ(q)−1S∗(q, a)

∫ 2P

max{P,$2
1}

e(βt5)

$1 log(t/$1)
dt. (7.13)

The formula (7.9) follows directly from (7.11) and (7.13) by summing over $1.
In order to confirm the estimate (7.10), we exploit well-known prime number estimates via partial

summation to obtain

Ξ(t; η1, η2) =

∫ min{v2,
√
t}

v1

1

u log u
· log t

log t− log u
du+O((log t)−1), (7.14)

valid for P 6 t 6 2P . But the change of variable v = (log t)/(log u) leads to the formula

∫ min{v2,
√
t}

v1

1

u log u
· log t

log t− log u
du =

∫ τ

σ

dv

v − 1
,

where

σ = max
{ log t

log v2
, 2
}

and τ =
log t

log v1
.

Thus we deduce from (7.14) that for P 6 t 6 2P , whenever η2 6 1
2 one has

Ξ(t; η1, η2) = log

(
η−1

1 − 1

η−1
2 − 1

)
+O((logP )−1).

The desired conclusion now follows immediately from (7.7) and the definition of u(β; η1, η2), and this
completes the proof of the lemma.

We now return to the task of evaluating R(n,X2;N). When α ∈ N(q, a) ⊆ N, an application of
Lemma 7.1 reveals that

h1(α) = ϕ(q)−1S∗(q, a)u(α− a/q; 1
3 , 1− 32c) +O(PL−5). (7.15)

Since the measure of N is plainly O(L3P−5), we deduce from (7.8) and (7.15) that

R(n,X2;N) =

∫
N

h1(α)g1(α)2G2(α)2e(−nα)dα

= S(n;L)J1(n;LP−5) +O(G2(0)2P−2L−1), (7.16)

where

S(n;L) =
∑

16q6L

q∑
a=1

(a,q)=1

(ϕ(q)−1S∗(q, a))21e(−an/q) (7.17)

and

J1(n;W ) =

∫ W

−W
u(β; 1

3 , 1− 32c)u1(β)2U2(β)2e(−nβ)dβ, (7.18)

in which we have written

U2(β) = u9(β)2
8∏
i=2

ui(β). (7.19)
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The singular series S(n;L) is easily computed by noting that Lemma 8.5 of Hua [8] shows that when
(a, q) = 1, one has the bound

S∗(q, a)� q
1
2 +ε, (7.20)

whence ∑
q>L

q∑
a=1

(a,q)=1

(ϕ(q)−1S∗(q, a))21e(−an/q)�
∑
q>L

ϕ(q)−20q
21
2 +ε � L−8.

On writing

S(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(ϕ(q)−1S∗(q, a))21e(−an/q), (7.21)

we therefore deduce that the series S(n) is absolutely convergent, and from (7.17) we find that

S(n;L) = S(n) +O(L−8). (7.22)

Moreover, Theorem 12 of [8] guarantees that

S(n)� 1 (7.23)

for all odd integers n.
Turning our attention now to the evaluation of the singular integral, we define

J(n) =

∫ ∞
−∞

u1(β)3U2(β)2e(−nβ)dβ. (7.24)

The estimate
uj(β)� Pj(logPj)

−1(1 + P 5
j |β|)−1 (1 6 j 6 9) (7.25)

is readily obtained through partial integration, and thereby we deduce that

J(n)−
∫ LP−5

−LP−5

u1(β)3U2(β)2e(−nβ)dβ

� P 3(logP )−3U2(0)2

∫ ∞
LP−5

(1 + P 5β)−3dβ

� P−2(logP )−3U2(0)2L−2 (7.26)

and ∫ LP−5

−LP−5

|u1(β)U2(β)|2dβ � P 2(logP )−2U2(0)2

∫ ∞
0

(1 + P 5β)−2dβ

� P−3(logP )−2U2(0)2. (7.27)

On recalling the conclusion of Lemma 7.1, we deduce from (7.18) that

J1(n;LP−5) = log
(1− 32c

16c

)∫ LP−5

−LP−5

u1(β)3U2(β)2e(−nβ)dβ

+O

(
P (logP )−2

∫ LP−5

−LP−5

|u1(β)U2(β)|2dβ

)
,

whence by (7.26) and (7.27),

J1(n;LP−5) = log
(1− 32c

16c

) (
J(n) +O(P−2(logP )−3U2(0)2L−2)

)
+O

(
P−2(logP )−4U2(0)2

)
.

Thus we conclude that

J1(n;LP−5) = log
(1− 32c

16c

)
J(n) +O(G2(0)2P−2(logP )−4). (7.28)

Moreover, as in the argument leading to (5.22) above, an application of Fourier’s integral formula
demonstrates that

J(n) � G2(0)2P−2(logP )−3. (7.29)

We summarise our deliberations thus far in the shape of the following lemma.
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Lemma 7.2. For each large odd integer n, one has

R(n,X2) = S(n)J(n)
(

log
(1− 32c

16c

)
+O((logP )−1)

)
,

where J(n) and S(n) satisfy the lower bounds

J(n)� G2(0)2P−2(logP )−3 and S(n)� 1.

Proof. The lemma is immediate on collecting together (7.5), (7.6), (7.16), (7.22) (7.28) with (7.23) and
(7.29).

The estimation of R(n,X1) and R(n,X3) is accomplished by means of Iwaniec’s linear sieve. We
announce our conclusions in the imminent lemma, but defer discussion of the proof to §9.

Lemma 7.3. For each large odd integer n, one has

R(n,X1) > S(n)J(n)

(
4

3− 66c
log
(

7
2 − 99c

)
+O((log logP )−1/50)

)
,

and

R(n,X3) < S(n)J(n)

(
4

3− 66c
log
( 32c

1− 32c

)
+O((log logP )−1/50)

)
.

Temporarily taking as granted the conclusion of Lemma 7.3, we may complete the proof of Theorem
2. We merely observe that by combining (7.4) and the conclusions of Lemmata 7.2 and 7.3, we obtain
for each odd integer n the lower bound

R(n,X0) > S(n)J(n)(C +O((log logP )−1/50)),

where

C =
4

3− 66c
log
( (7− 198c)(1− 32c)

64c

)
− log

(1− 32c

16c

)
.

Since c = 0.0183, we find that C > 0.049, whence the number of representations of an odd natural
number n as the sum of 21 fifth powers of prime numbers is at least as large as

R(n,X0)� S(n)J(n).

But by the second conclusion of Lemma 7.2, it follows that R(n;X0) > 0 for sufficiently large odd
natural numbers n. Thus the proof of Theorem 2 will be completed on establishing Lemma 7.3.

8. A singular series deriving from the sieve. In order to apply the linear sieve to establish Lemma
7.3, we must discuss the consequences of the presence of sifting variables in the representation problem
central to our argument. In particular, we must discuss the relevant singular series in some detail. We
begin by introducing the notation necessary for the later discussion.

First recall the definition of S∗(q, a) from (7.7), and write S(q, a) for S5(q, a), where S5(q, a) is defined
as in (2.1). We then define

Ad(q, n) =

q∑
a=1

(a,q)=1

(q−1S(q, ad5))(ϕ(q)−1S∗(q, a))20e(−an/q) (8.1)

and

Sd(n) =
∞∑
q=1

Ad(q, n). (8.2)

On combining the estimate (7.20) with the trivial estimate |S(q, ad5)| 6 q, we find that

Ad(q, n)� qε−9, (8.3)
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and hence we deduce that the singular series Sd(n) converges absolutely. Next define

Bd(p, n) =
∞∑
l=0

Ad(p
l, n).

Also, we define γ = γ(p) by

γ(p) =

{
2, when p = 5,

1, when p 6= 5,

in accordance with the definition (1.1). Then by Lemma 8.3 of Hua [8], whenever (a, p) = 1 and
l > γ(p), one has S∗(pl, a) = 0, and hence

Bd(p, n) =

γ∑
l=0

Ad(p
l, n). (8.4)

Further, by (8.3) one has
Bd(p, n) = 1 +O(p−8), (8.5)

and hence the infinite product
∏
pBd(p, n) is absolutely convergent. A multiplicative change of variables,

moreover, reveals that Bd(p, n) is equal either to Bp(p, n) or B1(p, n), according to whether p|d or p - d.
Furthermore, on referring to Lemma 8.1 of [8] and Lemmata 2.10 and 2.11 of [19], it is apparent that
Ad(q, n) is a multiplicative function of q, and thus we deduce that

Sd(n) =
∏
p

Bd(p, n) =
(∏
p-d

B1(p, n)
)(∏

p|d

Bp(p, n)
)
. (8.6)

Next, denote by M(n, q, s) the number of solutions of the congruence

n ≡ x5
1 + x5

2 + · · ·+ x5
s (mod q), (8.7)

with 1 6 xj 6 q and (xj , q) = 1 (1 6 j 6 s). Also, denote by N(n, q, s) the corresponding number of
solutions subject to the weaker constraint (xj , q) = 1 (2 6 j 6 s). Thus we have, in particular,

N(n, pγ , 21) =

pγ∑
x=1

M(n− x5, pγ , 20)

=

pγ∑
x=1

(x,p)=1

M(n− x5, pγ , 20) +

pγ−1∑
y=1

M(n− (py)5, pγ , 20)

= M(n, pγ , 21) + pγ−1M(n, pγ , 20). (8.8)

But as in Lemma 8.6 of [8] and Lemma 2.12 of [19], one has

B1(p, n) =

pγ∑
a=1

(p−γS(pγ , a))(ϕ(pγ)−1S∗(pγ , a))20e(−an/pγ)

= ϕ(pγ)−20N(n, pγ , 21), (8.9)

and

Bp(p, n) =

pγ∑
a=1

(ϕ(pγ)−1S∗(pγ , a))20e(−an/pγ)

= pγϕ(pγ)−20M(n, pγ , 20). (8.10)

But Lemmata 8.8 and 8.9 of [8] assert that for all primes p, one has M(m, pγ , 20) > 0 for each even
integer m. Thus, for all primes p, one has N(n, pγ , 21) > 0 for each integer n. On recalling (8.5), (8.6)
and (8.9), we therefore arrive at the lower bound

S1(n)� 1. (8.11)

In view of the lower bound (8.11), it makes sense to define the function

ωn(d) = Sd(n)/S1(n). (8.12)

We now aim to confirm that ωn(d) satisfies the conditions relevant to the application of the linear sieve.
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Lemma 8.1. The function ωn(d) is a multiplicative function of d, and satisfies

ωn(p) = 1 +O(p−8) and ωn(pl) = ωn(p),

for all primes p and natural numbers l. When n is odd, moreover, we have 0 6 ωn(p) < p for all prime
numbers p.

Proof. It follows from (8.6) and (8.12) that

ωn(d) =
∏
p|d

(Bp(p, n)/B1(p, n)). (8.13)

Thus ωn(d) is plainly a multiplicative function of d, and on recalling (8.5) it is also immediate that
ωn(p) = 1 +O(p−8). Furthermore, the formula (8.13) shows that for each prime p and natural number
l,

ωn(pl) =
Bp(p, n)

B1(p, n)
= ωn(p).

It remains only to establish the final assertion of the lemma, and for this we substitute from (8.9) and
(8.10) into (8.13) to obtain

ωn(p) =
pγM(n, pγ , 20)

N(n, pγ , 21)
.

Consequently, on recalling (8.8), we deduce that

ωn(p) =
pγM(n, pγ , 20)

M(n, pγ , 21) + pγ−1M(n, pγ , 20)
. (8.14)

But M(n, pγ , 21) > 0 for all prime numbers p when n is odd, as a consequence of Lemmata 8.8 and 8.9
of [8], and hence we obtain the desired bound 0 6 ωn(p) < p.

We conclude this section by investigating the relationship between the singular series S(n) defined
in (7.21), and the singular series S1(n) defined in (8.2).

Lemma 8.2. When z is a real number with z > 2, define

Wn(z) =
∏
p<z

(1− ωn(p)/p). (8.15)

Then one has

S1(n)Wn(z) = S(n)
e−γ0

log z

(
1 +O((log z)−1)

)
,

where γ0 denotes Euler’s constant.

Proof. Write

A(q, n) =

q∑
a=1

(a,q)=1

(ϕ(q)−1S∗(q, a))21e(−an/q)

and

B(p, n) =

γ∑
l=0

A(pl, n),

and note that the definition (7.21) is equivalent to

S(n) =

∞∑
q=1

A(q, n).

Then by an argument similar to that leading to (8.6), we have

S(n) =
∏
p

B(p, n), (8.16)
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and further,
B(p, n) = pγϕ(pγ)−21M(n, pγ , 21). (8.17)

But by (8.8) and (8.14), we have

1− ωn(p)

p
=

M(n, pγ , 21)

M(n, pγ , 21) + pγ−1M(n, pγ , 20)
=
M(n, pγ , 21)

N(n, pγ , 21)
.

Thus we deduce from (8.9) and (8.17) that

B1(p, n) = B(p, n)
(

1− 1

p

)N(n, pγ , 21)

M(n, pγ , 21)

= B(p, n)
(

1− 1

p

)(
1− ωn(p)

p

)−1

,

so that in view of the Euler products (8.6) and (8.16), we have

S1(n)Wn(z) = S(n)

(∏
p<z

(
1− 1

p

))∏
p>z

(
1− 1

p

)(
1− ωn(p)

p

)−1

 . (8.18)

However, Lemma 8.1 shows that∏
p>z

(
1− 1

p

)(
1− ωn(p)

p

)−1

=
∏
p>z

(
1 +O(p−9)

)
= 1 +O(z−8), (8.19)

and by Merten’s formula one has∏
p<z

(
1− 1

p

)
= e−γ0(log z)−1

(
1 +O((log z)−1)

)
. (8.20)

The proof of the lemma is completed by substituting (8.19) and (8.20) into (8.18).

9. Application of Iwaniec’s linear sieve. We now bring all of our forces to bear on the problem of
applying Iwaniec’s linear sieve to establish Lemma 7.3. We appeal to the linear sieve in the following
form.

Lemma 9.1. Define the functions

φ0(u) =
2eγ0

u
log(u− 1) and φ1(u) =

2eγ0

u
, (9.1)

for 2 6 u 6 3. Suppose that ω(d) is a multiplicative function of d satisfying the conditions

0 6 ω(p) < p and ω(pl) = 1 +O(p−1),

for each prime number p and natural number l. Let X be a real number with X > 3, let r(x) be a
non-negative arithmetical function, and write

Ed =
∑

P<x<2P
x≡0 (mod d)

r(x)− ω(d)

d
X.

Let z, U and V be positive real parameters satisfying the inequality

2 6
log(UV )

log z
6 3.

Suppose further that for any sequences (am) and (bk) with

|am| 6 1 and |bk| 6 1, (9.2)
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one has ∑
16m6U

am
∑

16k6V

bkEmk � X(logX)−2.

Then, on writing

W (z) =
∏
p<z

(1− ω(p)/p),

one has the lower bound∑
P<x<2P

(x,Π(z))=1

r(x) > XW (z)

(
φ0

(
log(UV )

log z

)
+O((log logX)−1/50)

)
,

and also the upper bound

∑
P<x<2P

(x,Π(z))=1

r(x) < XW (z)

(
φ1

(
log(UV )

log z

)
+O((log logX)−1/50)

)
.

Proof. On following the argument of the proof of Theorem 1 of Iwaniec [9], one finds that the in-
troduction of the non-negative weights r(x) is easily accomodated within the latter theorem, and the
conclusion claimed in Lemma 9.1 thus follows with little additional effort.

Our initial strategy is to apply Iwaniec’s linear sieve to estimate R(n,X1). In order to achieve this
objective, we introduce the set of integers

Yd = {P < x < 2P : x ≡ 0 (mod d)},

and investigate R(n,Yd) (here and in what follows, we retain the notation of §§6-8). With this end in
mind, we define

fd(α) =
∑

P/d<y<2P/d

e((dy)5α),

and when B ⊆ [0, 1), we write

R(n,Yd;B) =

∫
B

fd(α)g1(α)2G2(α)2e(−nα)dα.

Then by orthogonality we have

R(n,Yd) = R(n,Yd; [0, 1)) = R(n,Yd;N) +R(n,Yd; n). (9.3)

Recalling (2.1), we abbreviate S5(q, a) to S(q, a), and define also

v(β) =

∫ 2P

P

e(βt5)dt. (9.4)

Then by Theorem 4.1 of Vaughan [19], whenever α ∈ N(q, a) ⊆ N and 1 6 d 6 PL−3, we have

fd(α) = q−1S(q, ad5)

∫ 2P/d

P/d

e((α− a/q)d5t5)dt+O(L),

so that by a change of variable we obtain

fd(α) = (dq)−1S(q, ad5)v(α− a/q) +O(L). (9.5)

Thus, since the measure of N is O(L3P−5), we deduce from (7.8) and (9.5) that for 1 6 d 6 PL−6, one
has

R(n,Yd;N) = d−1Sd(n;L)J2(n;LP−5) +O(d−1G2(0)2P−2L−2), (9.6)
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where
Sd(n;L) =

∑
16q6L

Ad(q, n), (9.7)

with Ad(q, n) defined by (8.1), and

J2(n;W ) =

∫ W

−W
v(β)u1(β)2U2(β)2e(−nβ)dβ. (9.8)

Our next step is to complete the singular series and singular integral. First, on recalling (8.2) and
(8.3), we find from (9.7) that

Sd(n)−Sd(n;L)�
∑
q>L

qε−9 � L−7. (9.9)

Next we observe that by (9.4) and (7.7) one has

v(β) =

∫ 2P

P

logP +O(1)

log t
e(βt5)dt = u1(β) logP +O(P (logP )−1). (9.10)

Consequently, by applying trivial estimates in combination with (7.25), we deduce from (7.24) and (9.8)
that

J2(n;LP−5)− J(n) logP �P 3(logP )−2U2(0)2

∫ ∞
LP−5

(1 + P 5β)−2dβ

+ P 3(logP )−3U2(0)2

∫ ∞
0

(1 + P 5β)−2dβ

�P−2(logP )−3U2(0)2.

In view of (7.29), therefore, we may conclude that

J2(n;LP−5) = J(n)(logP +O(1)). (9.11)

We now turn our attention to the bilinear expressions occurring in the sieve. Let

U = P
1
2−c and V = P 1−32c, (9.12)

in which c = 0.0183, and write

Ed = R(n,Yd)− d−1Sd(n)J2(n;LP−5).

On recalling (8.12), we find that this definition is equivalent to

Ed = R(n,Yd)−
ωn(d)

d
S1(n)J2(n;LP−5).

Also, by (9.3), (9.6), (9.9) together with (9.11) and (7.29), we have

Ed = R(n,Yd; n) +O(d−1G2(0)2P−2L−2).

Thus we deduce that for any sequences (am) and (bk) satisfying (9.2), one has∑
16m6U

am
∑

16k6V

bkEmk =

∫
n

H(α)g1(α)2G2(α)2e(−nα)dα+O(G2(0)2P−2L−1), (9.13)

where H(α) = H(α; a,b) is the exponential sum defined by

H(α) =
∑

16m6U

am
∑

16k6V

bkfmk(α). (9.14)
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Suppose that α is a real number, and suppose also that a ∈ Z and q ∈ N satisfy the conditions (6.26).
We estimate the exponential sum H(α) by dividing up the summations in order to apply Lemmata 3.1

and 3.2. We put V0 = P
1
2−15c, and observe that

U7/8V
15/8
0 < P 7/8 and U15/8V

−1/8
0 = P 7/8.

Thus we may apply Lemma 3.2 with cl = 1 to obtain the estimate∑
16m6U

am
∑

16k6V0

bkfmk(α)� P 1− 1
16 +ε(UV0)

1
16 +

qεw5(q)P (logP )4

1 + P 5|α− a/q|
. (9.15)

By writing ∑
16m6U

am
∑

V0<k6V

bkfmk(α) =
∑

P/V <l<2P/V0

( ∑
m|l

16m6U

am

) ∑
P/l<k<2P/l
V0<k6V

bke((kl)
5α),

and noting that P/V > P 1/2, we find that a dyadic dissection argument in combination with Lemma
3.1 reveals the bilinear sum on the left hand side to be

� (logP ) sup
P/V6M6P/V0

(
PMε− 1

32 + (PM)
1
2 +ε +

qεw5(q)1/2P (logP )4

(1 + P 5|α− a/q|)1/2

)
. (9.16)

Combining the conclusions of (9.15) and (9.16), we find that

H(α)� P 1−c+ε +
qεw5(q)1/2P (logP )5

(1 + P 5|α− a/q|)1/2
. (9.17)

We now apply Lemma 6.3, which in view of (9.17) yields the estimate∫
n

H(α)g1(α)2G2(α)2e(−nα)dα� G2(0)2P−2(logP )−100,

whence by (9.13), for any sequences (am) and (bk) satisfying (9.2),∑
16m6U

am
∑

16k6V

bkEmk � G2(0)2P−2(logP )−100.

On recalling the estimates (8.11), (7.29) and (9.11), we therefore conclude that∑
16m6U

am
∑

16k6V

bkEmk � S1(n)J2(n;LP−5)(logP )−98. (9.18)

We are finally equipped to establish the lower bound for R(n,X1) presented in Lemma 7.3. With n
a fixed odd natural number, we take the arithmetical function r(x) equal to the number of solutions of
the equation (7.1) with pl satisfying the conditions (7.2) for 1 6 l 6 20. On recalling (7.3), we have
z = (2P )1/3, and so a smidgen of computation verifies that indeed

2 <
log(UV )

log z
< 3,

so that on taking
X = S1(n)J2(n;LP−5),

we find that the hypotheses necessary for the application of Lemma 9.1 are satisfied, by virtue of (9.18)
and Lemma 8.1. Consequently, employing a transparent modification of the notation of the statement
of Lemma 9.1, we arrive at the lower bound

R(n,X1) > S1(n)J2(n;LP−5)Wn(z)

(
φ0

( log(UV )

log z

)
+O((log logP )−1/50)

)
.
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Further, with an application of Lemma 8.2 together with (9.1), (9.11) and (9.12), one obtains

R(n,X1) > S(n)J(n)
( logP

log z

)( 2

κ
log(κ− 1) +O((log logP )−1/50)

)
, (9.19)

where

κ =
log(UV )

log z
= 3

(
3
2 − 33c

)
+O((logP )−1). (9.20)

The first conclusion of Lemma 7.3 is therefore immediate from (9.19).
We now turn our hand against the proof of the upper bound for R(n,X3) presented in Lemma

7.3. It is here that we apply the reversal of rôles technique in combination with Lemma 9.1. When
X ⊆ (P, 2P ) ∩ Z, we now denote by R′(n,X) the number of representations of the natural number n in
the form

n = x5 + y5 + p5
2 + p5

3 + · · ·+ p5
20, (9.21)

with x ∈ X3, y ∈ X, and with pl satisfying (7.2) for 2 6 l 6 20. Since X0 ⊆ X1, it is apparent that

R(n,X3) = R′(n,X0) 6 R′(n,X1). (9.22)

Define
h2(α) =

∑
x∈X3

e(αx5),

and when B ⊆ [0, 1), write

R′(n,Yd;B) =

∫
B

fd(α)h2(α)g1(α)G2(α)2e(−nα)dα.

By orthogonality, therefore, one has

R′(n,Yd) = R′(n,Yd; [0, 1)) = R′(n,Yd;N) +R′(n,Yd; n). (9.23)

We estimate h2(α) by means of Lemma 7.1, thereby obtaining for α ∈ N(q, a) ⊆ N the relation

h2(α) = ϕ(q)−1S∗(q, a)u(α− a/q; 1− 32c, 1
2 ) +O(PL−5).

In a by now familiar fashion (compare the argument leading to (9.6)), the latter estimate, in combination
with (9.5), (7.8), (7.20) and (9.9), readily yields for 1 6 d 6 PL−6 the estimate

R′(n,Yd;N) = d−1Sd(n)J3(n;LP−5) +O(d−1G2(0)2P−2L−2), (9.24)

where

J3(n;W ) =

∫ W

−W
v(β)u(β; 1− 32c, 1

2 )u1(β)U2(β)2e(−nβ)dβ.

But by applying trivial estimates in combination with (7.25) and (9.10), we find that

J3(n;LP−5)− (logP )

∫ LP−5

−LP−5

u1(β)2u(β; 1− 32c, 1
2 )U2(β)2e(−nβ)dβ

� P 3(logP )−3U2(0)2

∫ LP−5

0

(1 + P 5β)−1dβ

� P−2(logP )−3U2(0)2 logL.

Then by exploiting (7.24), (7.25), (7.29), (9.10) and Lemma 7.1, we deduce by an argument paralleling
the deduction of (7.28) from (7.18) that

J3(n;LP−5) =J(n)

(
log
( 32c

1− 32c

)
logP +O(logL)

)
+O(G2(0)2P−2(logP )−3)

= J(n)

(
log
( 32c

1− 32c

)
logP +O(logL)

)
. (9.25)
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We now put
E′d = R′(n,Yd)− d−1Sd(n)J3(n;LP−5),

so that in view of (8.12), we have

E′d = R′(n,Yd)−
ωn(d)

d
S1(n)J3(n;LP−5).

Then by (9.23) and (9.24), for any sequences (am) and (bk) satisfying (9.2), it follows from (9.14) that

∑
16m6U

am
∑

16k6V

bkE
′
mk =

∫
n

H(α)h2(α)g1(α)G2(α)2e(−nα)dα

+O(G2(0)2P−2L−1).

Then on recalling (9.17), we may apply Lemma 6.3 to conclude that under the same conditions,∑
16m6U

am
∑

16k6V

bkE
′
mk � G2(0)2P−2(logP )−100,

whence by (8.11), (7.29) and (9.25),∑
16m6U

am
∑

16k6V

bkE
′
mk � S1(n)J3(n;LP−5)(logP )−98. (9.26)

We are finally again equipped for our application of Lemma 9.1. With n a fixed odd natural number,
we take the arithmetical function r(y) equal to the number of solutions of the equation (9.21) with
x ∈ X3 and pl satisfying the conditions (7.2) for 2 6 l 6 20. As in our previous application of Lemma
9.1, we find that on taking

X = S1(n)J3(n;LP−5),

the hypotheses necessary for the application of Lemma 9.1 are satisfied, on account of the upper bound
(9.26) together with Lemma 8.1. Consequently, employing a natural modification of the notation of the
statement of Lemma 9.1, we grasp the upper bound

R′(n,X1) < S1(n)J3(n;LP−5)Wn(z)

(
φ1

( log(UV )

log z

)
+O((log logP )−1/50)

)
.

Thus an application of Lemma 8.2 in combination with (9.1), (9.12), (9.25) and (9.22) yields

R(n,X3) < S(n)J(n)
( logP

log z

)
log
( 32c

1− 32c

)( 2

κ
+O((log logP )−1/50)

)
,

where κ is the number defined in (9.20). The second conclusion of Lemma 7.3 follows immediately.
Given the discussion concluding §7, the proof of Theorem 2 is at last complete.
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2. J. Brüdern, A sieve approach to the Waring-Goldbach problem, I: sums of four cubes, Ann. Sci. École Norm. Sup.
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